Setting a seed population from the Matlab interface

This commit is contained in:
Marcel Kronfeld 2011-03-28 15:13:56 +00:00
parent 3e7ef7a9e5
commit 0c6685fa67
5 changed files with 76 additions and 4 deletions

View File

@ -59,6 +59,8 @@ int.optParamValues = [];
int.hexMask=hex2dec('ffffffff');
int.dataType=''; % to be set later!
int.outputAllStatsFields=1;
int.seedPop=[];
int.seedPopFit=[];
if (isa(fhandle, 'function_handle'))
int.f = fhandle;

View File

@ -1,11 +1,17 @@
function desc = getDesc(int, ID)
% Return the String description of an indicated optimizer
% with member descriptions.
% For an integer ID, return the String description of the indicated optimizer
% with member descriptions. In case ID is of a different type, it is attempted
% to retrieve a String description for that object directly.
import eva2.gui.BeanInspector;
import eva2.server.modules.GOParameters;
import eva2.OptimizerFactory;
params = OptimizerFactory.getParams(ID, int.mp);
desc = BeanInspector.getDescription(params.getOptimizer, false);
if isnumeric(ID)
params = OptimizerFactory.getParams(ID, int.mp);
desc = BeanInspector.getDescription(params.getOptimizer, false);
else
desc = BeanInspector.getDescription(ID, false);
end

View File

@ -95,6 +95,11 @@ if ((nargin == 2) || (nargin == 3))
error('invalid Display option, only off/final/notify/iter are recognized');
end
if isempty(int.seedPop) % set the seed data
int.mp.clearSeedPopulation;
else
int.mp.setSeedPopulation(int.seedPop, int.seedPopFit);
end
int=runEvalLoopJE(int, 1, optType, outputFilePrefix, -1, -1, -1);
else

View File

@ -0,0 +1,27 @@
function int=setSeedPopFit(int, seedData, seedDataFit)
% int=setSeedPopulation(int, seedData)
% Set the seed data for optimization. A 2-D array of doubles is expected
% which will be converted to the appropriate data type if necessary.
% The seed data must fit the problem dimension, while the population size
% will be adapted if necessary. If the seed data is an empty array, the
% seed population will be initialized randomly as by default.
% int: the interface instance
% seedData: 2-D array of dimension popSize x problemDim or [] to reset
% and use random initial population
if length(seedData)>1
%size(int.range,1)
%int.dataType
%int.dim
if size(seedData,2)~=int.dim
error(['Mismatching dimension: seed data should be of size popSize x problemDim. Current problemDim is ' num2str(int.dim)]);
end
if size(seedData,1)~=size(seedDataFit,1)
error('Mismatching dimension of fitness array: expecting equal no. lines in seedData and seedDataFit!');
end
int.seedPop=seedData;
int.seedPopFit=seedDataFit;
else
int.seedPop=[]; % reset it
int.seedPopFit=[];
end

View File

@ -0,0 +1,32 @@
function int=setSeedPopulation(int, seedData)
% int=setSeedPopulation(int, seedData)
% Set the seed data for optimization. A 2-D array of doubles is expected
% which will be converted to the appropriate data type if necessary.
% The seed data must fit the problem dimension, while the population size
% will be adapted if necessary. If the seed data is an empty array, the
% seed population will be initialized randomly as by default.
% int: the interface instance
% seedData: 2-D array of dimension popSize x problemDim or [] to reset
% and use random initial population
if length(seedData)>1
%size(seedData)
%size(int.range,1)
%int.dataType
%int.dim
if size(seedData,2)~=int.dim
error(['Mismatching dimension: seed data should be of size popSize x problemDim. Current problemDim is ' num2str(int.dim)]);
end
for i=1:size(seedData,1)
if (isempty(int.args))
fit(i,:) = feval(int.f, seedData(i,:));
else
fit(i,:) = feval(int.f, seedData(i,:), int.args);
end
end
int=setSeedPopFit(int,seedData,fit);
else
int.seedPop=[]; % reset it
int.seedPopFit=[];
end