Cosmetics again. MK rev. 187.

This commit is contained in:
Marcel Kronfeld 2008-09-05 16:35:18 +00:00
parent ee67276827
commit 1a11229eff
5 changed files with 27 additions and 8 deletions

View File

@ -457,6 +457,17 @@ public class Plot implements PlotInterface, Serializable {
m_Frame = null; m_Frame = null;
} }
/**
* Add the corners of the given range as unconnected points.
*
* @param range
* @param graphLabel
*/
public void setCornerPoints(double[][] range, int graphLabel) {
setUnconnectedPoint(range[0][0], range[1][0], graphLabel);
setUnconnectedPoint(range[0][1], range[1][1], graphLabel);
}
// /** // /**
// * Just for testing the Plot class. // * Just for testing the Plot class.
// */ // */

View File

@ -870,9 +870,10 @@ public abstract class AbstractEAIndividual implements IndividualInterface, java.
/** /**
* For any AbstractEAIndividual try to convert its position to double[] and return it. * For any AbstractEAIndividual try to convert its position to double[] and return it.
* Returns null if there is no conversion available.
* *
* @param indy * @param indy
* @return double valued position of an individual * @return double valued position of an individual or null
*/ */
public static double[] getDoublePosition(AbstractEAIndividual indy) { public static double[] getDoublePosition(AbstractEAIndividual indy) {
if (indy instanceof InterfaceDataTypeDouble) { if (indy instanceof InterfaceDataTypeDouble) {

View File

@ -47,7 +47,7 @@ public class SelProbInvertByMax extends AbstractSelProb {
// first check if anyone holds the constraints // first check if anyone holds the constraints
int k=0; int k=0;
while ((k < population.size()) && !isFeasible) { while ((k < population.size()) && !isFeasible) {
if (!((AbstractEAIndividual)population.get(k)).violatesConstraint()) isFeasible = true; if (!(population.getEAIndividual(k)).violatesConstraint()) isFeasible = true;
k++; k++;
} }
} }
@ -58,7 +58,8 @@ public class SelProbInvertByMax extends AbstractSelProb {
sum = 0; sum = 0;
// invert fitness // invert fitness
for (int i = 0; i < data.length; i++) { for (int i = 0; i < data.length; i++) {
result[i] = maxFit - data[i][x]; if (population.getEAIndividual(i).violatesConstraint()) result[i]=0;
else result[i] = maxFit - data[i][x];
sum += result[i]; sum += result[i];
} }

View File

@ -18,6 +18,10 @@ public class SelProbNonLinearRanking extends AbstractSelProb implements java.io.
public SelProbNonLinearRanking() { public SelProbNonLinearRanking() {
} }
public SelProbNonLinearRanking(double theC) {
this.m_C = theC;
}
public SelProbNonLinearRanking(SelProbNonLinearRanking a) { public SelProbNonLinearRanking(SelProbNonLinearRanking a) {
this.m_C = a.m_C; this.m_C = a.m_C;
} }
@ -178,7 +182,7 @@ public class SelProbNonLinearRanking extends AbstractSelProb implements java.io.
return "Non-Linear Ranking"; return "Non-Linear Ranking";
} }
/** This methods allow you to set and get the nappa. /** This methods allow you to set and get the scaling.
* @param x Long seed. * @param x Long seed.
*/ */
public void setC(double x) { public void setC(double x) {
@ -190,6 +194,6 @@ public class SelProbNonLinearRanking extends AbstractSelProb implements java.io.
return m_C; return m_C;
} }
public String cTipText() { public String cTipText() {
return "The c should be << 1."; return "The exponential base c is taken to the power of the individual's rank and should be << 1.";
} }
} }

View File

@ -40,7 +40,10 @@ public class SelProbStandard extends AbstractSelProb implements java.io.Serializ
// first check if anyone holds the constraints // first check if anyone holds the constraints
boolean isFeasible = false; boolean isFeasible = false;
for (int i = 0; i < population.size(); i++) { for (int i = 0; i < population.size(); i++) {
if (!((AbstractEAIndividual)population.get(i)).violatesConstraint()) isFeasible = true; if (!((AbstractEAIndividual)population.get(i)).violatesConstraint()) {
isFeasible = true;
break;
}
} }
if (isFeasible) { if (isFeasible) {
// at least one is feasible // at least one is feasible
@ -53,9 +56,8 @@ public class SelProbStandard extends AbstractSelProb implements java.io.Serializ
result[i] = Math.exp(-data[i][x]); result[i] = Math.exp(-data[i][x]);
else else
result[i] = 0; result[i] = 0;
}
for (int i = 0; i < data.length; i++)
sum += result[i]; sum += result[i];
}
for (int i = 0; i < population.size(); i++) for (int i = 0; i < population.size(); i++)
((AbstractEAIndividual)population.get(i)).SetSelectionProbability(x, result[i]/sum); ((AbstractEAIndividual)population.get(i)).SetSelectionProbability(x, result[i]/sum);
} }