diff --git a/src/eva2/optimization/individuals/InterfaceDataTypeInteger.java b/src/eva2/optimization/individuals/InterfaceDataTypeInteger.java index 43500050..fed087d7 100644 --- a/src/eva2/optimization/individuals/InterfaceDataTypeInteger.java +++ b/src/eva2/optimization/individuals/InterfaceDataTypeInteger.java @@ -2,7 +2,7 @@ package eva2.optimization.individuals; /** * This interface gives access to a integer phenotype and except - * for problemspecific operators should only be used by the + * for problem specific operators should only be used by the * optimization problem. */ public interface InterfaceDataTypeInteger { @@ -10,7 +10,7 @@ public interface InterfaceDataTypeInteger { /** * This method allows you to request a certain amount of int data * - * @param length The lenght of the int[] that is to be optimized + * @param length The length of the int[] that is to be optimized */ void setIntegerDataLength(int length); diff --git a/src/eva2/optimization/operator/postprocess/SolutionHistogram.java b/src/eva2/optimization/operator/postprocess/SolutionHistogram.java index 14b3aa8d..0ebc7ada 100644 --- a/src/eva2/optimization/operator/postprocess/SolutionHistogram.java +++ b/src/eva2/optimization/operator/postprocess/SolutionHistogram.java @@ -152,7 +152,7 @@ public class SolutionHistogram { * This resets the arity. * * @param pop - * @param hist + * @param crit */ public void updateFrom(Population pop, int crit) { SolutionHistogram.createFitNormHistogram(pop, this, crit); @@ -176,10 +176,6 @@ public class SolutionHistogram { return res; } -// public void updateFrom(Population pop, double accuracy) { -// -// } - public double getScore() { double sc = 0; if (sum() > 0) { diff --git a/src/eva2/optimization/strategies/NelderMeadSimplex.java b/src/eva2/optimization/strategies/NelderMeadSimplex.java index 7f5348bd..5e86bd49 100644 --- a/src/eva2/optimization/strategies/NelderMeadSimplex.java +++ b/src/eva2/optimization/strategies/NelderMeadSimplex.java @@ -28,7 +28,6 @@ public class NelderMeadSimplex extends AbstractOptimizer implements Serializable // simulating the generational cycle. Set rather small (eg 5) for use as local search, higher for global search (eg 50) private int generationCycle = 50; private int fitIndex = 0; // choose criterion for multi objective functions - private AbstractOptimizationProblem optimizationProblem; private boolean checkConstraints = true; public NelderMeadSimplex() { @@ -219,7 +218,7 @@ public class NelderMeadSimplex extends AbstractOptimizer implements Serializable // this simulates the generational loop expected by some other modules int evalCntStart = population.getFunctionCalls(); int evalsDone = 0; - optimizationProblem.evaluatePopulationStart(population); + ((AbstractOptimizationProblem)this.optimizationProblem).evaluatePopulationStart(population); do { AbstractEAIndividual ind = simplexStep(population); if (ind != null) { //Verbesserung gefunden @@ -245,7 +244,7 @@ public class NelderMeadSimplex extends AbstractOptimizer implements Serializable } evalsDone = population.getFunctionCalls() - evalCntStart; } while (evalsDone < generationCycle); - optimizationProblem.evaluatePopulationEnd(population); + ((AbstractOptimizationProblem)optimizationProblem).evaluatePopulationEnd(population); this.population.incrGeneration(); }