Cleaning up resources (3) Some were moved to the ES/Prob package, some didnt contain real information and were deleted.

This commit is contained in:
Marcel Kronfeld 2008-04-01 09:40:48 +00:00
parent 2221ac4a1d
commit 3e4caef0a7
34 changed files with 0 additions and 517 deletions

View File

@ -1,13 +0,0 @@
<html>
<head>
<title>Epsilon SV-Regression</title>
</head>
<body>
 
<h1 align="center">Epsilon SV-Regression</h1>
<center>
</center><br>
Please read the JavaEvA manual for a detailed description.
</ul>
</body>
</html>

View File

@ -1,16 +0,0 @@
<html>
<head>
<title>ESIndividual</title>
</head>
<body>
 
<h1 align="center">ESIndividual</h1>
<center>
</center><br>
This element represents the properties of an individual.
The most important evolutionary operator of an ES is
the mutation of the objective variables representing
the solution of the problem, which is responsible
for the self-adaptation capability of the ES
</body>
</html>

View File

@ -1,17 +0,0 @@
<html>
<head>
<title>f_1 : Sphere function</title>
</head>
<body>
<h1 align="center">ESInitPopulationSpaceFilling</h1>
<center>
</center><br>
ESPara contains the information describing the Evolution Strategy:
<ul>
<li>The problem to be solved.</li>
<li>A seed value for the random number genarator.</li>
<li>A termination criterium for the algorithm.</li>
<li>The used population.</li>
</ul>
</body>
</html>

View File

@ -1,10 +0,0 @@
<html>
<head>
<title>ESInitPopulationRandom</title>
</head>
<body>
 
<h1 align="center">ESInitPopulationRandom</h1>
<center>
</center><br>
Here you can specify the number of individuals, which are randomly initialized.

View File

@ -1,18 +0,0 @@
<html>
<head>
<title>f_1 : Sphere function</title>
</head>
<body>
 
<h1 align="center">ESInitPopulationSpaceFilling</h1>
<center>
</center><br>
ESPara contains the information describing the Evolution Strategy:
<ul>
<li>The problem to be solved.</li>
<li>A seed value for the random number genarator.</li>
<li>A termination criterium for the algorithm.</li>
<li>The used population.</li>
</ul>
</body>
</html>

View File

@ -1,17 +0,0 @@
<html>
<head>
<title>f_1 : Sphere function</title>
</head>
<body> 
<h1 align="center">Parameters for the Evolution Strategy</h1>
<center>
</center><br>
The Java Class ESPara contains the information describing an Evolution Strategy (ES):
<ul>
<li>The problem to be solved.</li>
<li>A seed value for the random number generator.</li>
<li>A termination criterion for the algorithm.</li>
<li>The ES population.</li>
</ul>
</body>
</html>

View File

@ -1,18 +0,0 @@
<html>
<head>
<title>ESPopulation</title>
</head>
<body> 
<h1 align="center">ESPopulation</h1>
<center>
</center><br>
ESPopulation contains the information describing an Evolution Strategy (ES):
<ul>
<li>A prototype of an individual (contains mutation operator).</li>
<li>The population size of the parents: lambda.</li>
<li>The population size of the children: mu.</li>
<li>A recombination operator.</li>
<li>A fitness based selection operator.</li>
</ul>
</body>
</html>

View File

@ -1,18 +0,0 @@
<html>
<head>
<title>ESRecombination</title>
</head>
<body>
 
<h1 align="center">ESRecombination</h1>
<center>
</center><br>
The recombination operator has the following editable properties:
<ul>
<li>strategy for recombination of the strategy parameters of the mutation operators..</li>
<li>strategy for recombination of the objectives of an individual..</li>
<li>rho = number of parents, which recombinate to one offspring individual..</li>
<li>strategy for selecting the input individuals for one recombination.</li>
</ul>
</body>
</html>

View File

@ -1,12 +0,0 @@
<html>
<head>
<title>ES Comma Selection</title>
</head>
<body>
 
<h1 align="center">ES Comma Selection Operator</h1>
<center>
</center><br>
The best mu individuals are selected from lambda offspring individuals.
</body>
</html>

View File

@ -1,26 +0,0 @@
<html>
<head>
<title>ES - Median Selection </title>
</head>
<body>
 
<h1 align="center">ES Median Selection Strategy</h1>
<center>
</center><br>
The main application field of the Median Selection Strategy
operator are steady state algorithms.
A standard steady-state ES is equivalent to a (mu + 1) ES.
Only one individual is generated and evaluated
at each step and gets immediately integrated into the population.
Compared to generation based algorithms the information of
new evaluated individuals can be integrated directly into the optimization process.
The idea is to approximate the selection mechanism
of a standard (mu,lambda) ES, by
using a fitness buffer containing
fitness values of the last n evaluations.
Given a relative rate of acceptance r=mu\lambda.
A newly evaluated individual substitutes the worst individual
of the population, if it has a better fitness than the r*n best individuals
in the buffer.
</body>
</html>

View File

@ -1,18 +0,0 @@
<html>
<head>
<title>f_1 : Sphere function</title>
</head>
<body>
 
<h1 align="center">ESSelectionStrategyMedian</h1>
<center>
</center><br>
ESPara contains the information describing the Evolution Strategy:
<ul>
<li>The problem to be solved.</li>
<li>A seed value for the random number genarator.</li>
<li>A termination criterium for the algorithm.</li>
<li>The used population.</li>
</ul>
</body>
</html>

View File

@ -1,13 +0,0 @@
<html>
<head>
<title>Plus Selection Strategy</title>
</head>
<body>
 
<h1 align="center">ES Plus Selection Operator</h1>
<center>
</center><br>
The best mu individuals are selected from the
aggregation of the lambda offspring individuals and the mu parents.
</body>
</html>

View File

@ -1,12 +0,0 @@
<html>
<head>
<title>Gauss Process Regression Model</title>
</head>
<body>
<h1 align="center">Gauss Process Regression Model</h1>
<center>
</center><br>
Please read the JavaEvA manual for a detailed description.
</ul>
</body>
</html>

View File

@ -1,28 +0,0 @@
<html>
<head>
<title>Model Assisted Evolution Strategy - MAES</title>
</head>
<body>
 
<h1 align="center">Model Assisted Evolution Strategy - MAES</h1>
<center>
</center><br>
In the pre-selection concept lambdaPlus>lambda
individuals are generated from mu parents.
All lambdaPlus individuals are evaluated by a
surrogate model of the fitness landscape and the estimated
fitness values are used to pre-select the lambda
best individuals, which will be evaluated with
the real fitness function.
The model is trained at the beginning with a randomly created
initial population and is updated after each generation
step with lambda new fitness cases.
The idea behind this approach is that only the
most promising individuals with a good fitness prediction
are evaluated with the true fitness function.
Every generation a new offspring lambda is evaluated with the real fitness function,
the model is updated with this information of \lambda fitness cases.
</body>
</html>

View File

@ -1,16 +0,0 @@
<html>
<head>
<title>MAESIndividual</title>
</head>
<body>
 
<h1 align="center">MAESIndividual</h1>
<center>
</center><br>
This element represents the properties of an individual.
The most important evolutionary operator of an ES is
the mutation of the objective variables representing
the solution of the problem, which is responsible
for the self-adaptation capability of the ES
</body>
</html>

View File

@ -1,17 +0,0 @@
<html>
<head>
<title>MAESPara</title>
</head>
<body> 
<h1 align="center">MAESPara</h1>
<center>
</center><br>
MAESPara contains the information describing an Evolution Strategy (ES):
<ul>
<li>The problem to be solved.</li>
<li>A seed value for the random number generator.</li>
<li>A termination criterion for the algorithm.</li>
<li>The MAES population.</li>
</ul>
</body>
</html>

View File

@ -1,23 +0,0 @@
<html>
<head>
<title>MAESPopulation</title>
</head>
<body> 
<h1 align="center">Model Assisted Population</h1>
<center>
</center><br>
The MAESPopulation panel contains the information describing the Model Assisted Evolution Strategy (MAES):
<ul>
<li>A prototype of an individual (contains mutation operator).</li>
<li>The size of the model pre-selected individuals: lambdaPlus>=lambda.
For lambdaPlus=lambda you have no model impact.</li>
<li>The regression model for fitness prediction.</li>
<li>The model size is given by the number of last evaluated individuals,
which are used to train the model.</li>
<li>The population size of the parents: lambda.</li>
<li>The population size of the children: mu.</li>
<li>A recombination operator.</li>
<li>A fitness based selection operator.</li>
</ul>
</body>
</html>

View File

@ -1,18 +0,0 @@
<html>
<head>
<title>MAESRecombination</title>
</head>
<body>
 
<h1 align="center">MAESRecombination</h1>
<center>
</center><br>
The recombination operator has the following editable properties:
<ul>
<li>strategy for recombination of the strategy parameters of the mutation operators..</li>
<li>strategy for recombination of the objectives of an individual..</li>
<li>rho = number of parents, which recombinate to one offspring individual..</li>
<li>strategy for selecting the input individuals for one recombination.</li>
</ul>
</body>
</html>

View File

@ -1,12 +0,0 @@
<html>
<head>
<title>MAES Comma Selection</title>
</head>
<body>
 
<h1 align="center">MAES Comma Selection Operator</h1>
<center>
</center><br>
The best mu individuals are selected from lambda offspring individuals.
</body>
</html>

View File

@ -1,32 +0,0 @@
<html>
<head>
<title>MAES - Median Selection </title>
</head>
<body>
 
<h1 align="center">MAES Median Selection Strategy</h1>
<center>
</center><br>
The main application field of the Median Selection Strategy
operator are steady state algorithms.
A standard steady-state ES is equivalent to a (mu + 1) ES.
Only one individual is generated and evaluated
at each step and gets immediately integrated into the population.
Compared to generation based algorithms the information of
new evaluated individuals can be integrated directly into the optimization process.
The idea is to approximate the selection mechanism
of a standard (mu,lambda) ES, by
using a fitness buffer containing
fitness values of the last n evaluations.
Given a relative rate of acceptance r=mu\lambda.
A newly evaluated individual substitutes the worst individual
of the population, if it has a better fitness than the r*n best individuals
in the buffer.
<ul>
<li>The problem to be solved.</li>
<li>A seed value for the random number genarator.</li>
<li>A termination criterium for the algorithm.</li>
<li>The used population.</li>
</ul>
</body>
</html>

View File

@ -1,13 +0,0 @@
<html>
<head>
<title>Plus Selection Strategy</title>
</head>
<body>
 
<h1 align="center">MAES Plus Selection Operator</h1>
<center>
</center><br>
The best mu individuals are selected from the
aggredation of the lambda offspring individuals and the mu parents.
</body>
</html>

View File

@ -1,13 +0,0 @@
<html>
<head>
<title>CMA Mutation</title>
</head>
<body>
 
<h1 align="center">CMA Mutation</h1>
<center>
</center><br>
Please read the JavaEvA manual for a detailed description.
</ul>
</body>
</html>

View File

@ -1,13 +0,0 @@
<html>
<head>
<title>f_1 : Sphere function</title>
</head>
<body>
 
<h1 align="center">MutationMSRGlobal</h1>
<center>
</center><br>
Please read the JavaEvA manual for a detailed description.
</ul>
</body>
</html>

View File

@ -1,15 +0,0 @@
<html>
<head>
<title>f_1 : Sphere function</title>
</head>
<body>
 
<h1 align="center">MutationMSRSeperate</h1>
<center>
</center><br>
<center>
</center><br>
Please read the JavaEvA manual for a detailed description.
</ul>
</body>
</html>

View File

@ -1,13 +0,0 @@
<html>
<head>
<title>MVA Mutation</title>
</head>
<body>
 
<h1 align="center">MVA Mutation</h1>
<center>
</center><br>
Please read the JavaEvA manual for a detailed description.
</ul>
</body>
</html>

View File

@ -1,13 +0,0 @@
<html>
<head>
<title>Random Mutation</title>
</head>
<body>
 
<h1 align="center">Random Mutation</h1>
<center>
</center><br>
Please read the JavaEvA manual for a detailed description.
</ul>
</body>
</html>

View File

@ -1,13 +0,0 @@
<html>
<head>
<title>Success Rule Mutation</title>
</head>
<body>
 
<h1 align="center">Success Rule</h1>
<center>
</center><br>
Please read the JavaEvA manual for a detailed description.
</ul>
</body>
</html>

View File

@ -1,13 +0,0 @@
<html>
<head>
<title>NU SV-Regression</title>
</head>
<body>
 
<h1 align="center">NU SV-Regression</h1>
<center>
</center><br>
Please read the JavaEvA manual for a detailed description.
</ul>
</body>
</html>

View File

@ -1,13 +0,0 @@
<html>
<head>
<title>Poly model</title>
</head>
<body>
 
<h1 align="center">Poly model</h1>
<center>
</center><br>
Please read the JavaEvA manual for a detailed description.
</ul>
</body>
</html>

View File

@ -1,18 +0,0 @@
<html>
<head>
<title>f_1 : Sphere function</title>
</head>
<body>
 
<h1 align="center">PolyRBFJama</h1>
<center>
</center><br>
ESPara contains the information describing the Evolution Strategy:
<ul>
<li>The problem to be solved.</li>
<li>A seed value for the random number genarator.</li>
<li>A termination criterium for the algorithm.</li>
<li>The used population.</li>
</ul>
</body>
</html>

View File

@ -1,13 +0,0 @@
<html>
<head>
<title>RBF model</title>
</head>
<body>
 
<h1 align="center">RBF model</h1>
<center>
</center><br>
Please read the JavaEvA manual for a detailed description.
</ul>
</body>
</html>

Binary file not shown.

Before

Width:  |  Height:  |  Size: 979 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 978 B

View File

@ -1,13 +0,0 @@
<html>
<head>
<title>RVM model</title>
</head>
<body>
 
<h1 align="center">RVM model</h1>
<center>
</center><br>
Please read the JavaEvA manual for a detailed description.
</ul>
</body>
</html>