Merge MK 263:264: Some new functions (coming with NES tests)
This commit is contained in:
parent
ce386ba34c
commit
3f4d270524
@ -5,6 +5,7 @@ import java.util.ArrayList;
|
||||
|
||||
import eva2.server.go.individuals.AbstractEAIndividual;
|
||||
import eva2.server.go.populations.Population;
|
||||
import eva2.tools.EVAERROR;
|
||||
|
||||
/** This abstract implementation gives some general
|
||||
* methods for retrieving and cleaning fitness values.
|
||||
@ -70,34 +71,42 @@ public abstract class AbstractSelProb implements InterfaceSelectionProbability,
|
||||
tmpList = new ArrayList();
|
||||
for (int j = 0; j < inputs.length; j++) {
|
||||
obj = tmpIndy.getData(inputs[j]);
|
||||
if (obj==null) EVAERROR.errorMsgOnce("Error: could not get data by key " + inputs[j] + " from individual in AbstractSelProb");
|
||||
if (obj instanceof double[]) {
|
||||
for (int m = 0; m < ((double[])obj).length; m++) {
|
||||
tmpList.add(new Double(((double[])obj)[m]));
|
||||
}
|
||||
continue;
|
||||
}
|
||||
if (obj instanceof Double) {
|
||||
tmpList.add((Double)obj);
|
||||
continue;
|
||||
}
|
||||
if (obj instanceof float[]) {
|
||||
for (int m = 0; m < ((float[])obj).length; m++) {
|
||||
tmpList.add(new Double(((float[])obj)[m]));
|
||||
}
|
||||
continue;
|
||||
}
|
||||
if (obj instanceof Float) {
|
||||
tmpList.add((Float)obj);
|
||||
continue;
|
||||
}
|
||||
if (obj instanceof long[]) {
|
||||
for (int m = 0; m < ((long[])obj).length; m++) {
|
||||
tmpList.add(new Double(((long[])obj)[m]));
|
||||
}
|
||||
continue;
|
||||
}
|
||||
if (obj instanceof Long) {
|
||||
tmpList.add((Long)obj);
|
||||
continue;
|
||||
}
|
||||
if (obj instanceof int[]) {
|
||||
for (int m = 0; m < ((int[])obj).length; m++) {
|
||||
tmpList.add(new Double(((int[])obj)[m]));
|
||||
}
|
||||
continue;
|
||||
}
|
||||
if (obj instanceof Integer) {
|
||||
tmpList.add((Integer)obj);
|
||||
|
@ -402,6 +402,7 @@ public class Processor extends Thread implements InterfaceProcessor, InterfacePo
|
||||
resultPop.setPopulationSize(resultPop.size());
|
||||
}
|
||||
resultPop = PostProcess.postProcess(ppp, resultPop, (AbstractOptimizationProblem)goParams.getProblem(), listener);
|
||||
resPop = resultPop;
|
||||
return resultPop;
|
||||
} else return null;
|
||||
}
|
||||
|
@ -35,7 +35,12 @@ public class Serializer {
|
||||
static public void store(Serializable o, File f) throws IOException {
|
||||
FileOutputStream file = new FileOutputStream(f);
|
||||
ObjectOutputStream out = new ObjectOutputStream(file);
|
||||
out.writeObject(o);
|
||||
try {
|
||||
out.writeObject(o);
|
||||
} catch (java.io.NotSerializableException e) {
|
||||
System.err.println("Error: Object " + o.getClass() + " is not serializable - run settings cannot be stored.");
|
||||
e.printStackTrace();
|
||||
}
|
||||
out.flush();
|
||||
out.close();
|
||||
file.close();
|
||||
|
@ -11,6 +11,7 @@ import java.util.Locale;
|
||||
|
||||
import wsi.ra.math.Jama.util.Maths;
|
||||
import eva2.gui.BeanInspector;
|
||||
import eva2.tools.Mathematics;
|
||||
import eva2.tools.Pair;
|
||||
|
||||
|
||||
@ -232,6 +233,17 @@ public class Matrix implements Cloneable, java.io.Serializable {
|
||||
return A;
|
||||
}
|
||||
|
||||
/**
|
||||
* Produce a matrix with the diagonal entries of the instance. All others are set to zero.
|
||||
*
|
||||
* @return a diagonal matrix
|
||||
*/
|
||||
public Matrix getDiagonalMatrix() {
|
||||
double[][] D = new double[m][n];
|
||||
for (int i=0; i<Math.min(m,n); i++) D[i][i]=A[i][i];
|
||||
return new Matrix(D);
|
||||
}
|
||||
|
||||
/** Copy the internal two-dimensional array.
|
||||
@return Two-dimensional array copy of matrix elements.
|
||||
*/
|
||||
@ -239,9 +251,10 @@ public class Matrix implements Cloneable, java.io.Serializable {
|
||||
public double[][] getArrayCopy () {
|
||||
double[][] C = new double[m][n];
|
||||
for (int i = 0; i < m; i++) {
|
||||
for (int j = 0; j < n; j++) {
|
||||
C[i][j] = A[i][j];
|
||||
}
|
||||
System.arraycopy(A[i], 0, C[i], 0, n);
|
||||
// for (int j = 0; j < n; j++) {
|
||||
// C[i][j] = A[i][j];
|
||||
// }
|
||||
}
|
||||
return C;
|
||||
}
|
||||
@ -271,6 +284,10 @@ public class Matrix implements Cloneable, java.io.Serializable {
|
||||
return vals;
|
||||
}
|
||||
|
||||
public double[] getRowShallow(int i) {
|
||||
return A[i];
|
||||
}
|
||||
|
||||
/** Make a one-dimensional row packed copy of the internal array.
|
||||
@return Matrix elements packed in a one-dimensional array by rows.
|
||||
*/
|
||||
@ -1177,4 +1194,30 @@ public class Matrix implements Cloneable, java.io.Serializable {
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Subtract a line from the indicated line of this matrix in place.
|
||||
*
|
||||
* @param rowIndex
|
||||
* @param B
|
||||
*/
|
||||
public void rowSubtract(int rowIndex, double[] v) {
|
||||
if ((v.length != n) || (rowIndex<0) || (rowIndex>=m)) throw new IllegalArgumentException("Invalid matrix dimensions for rowMinus!");
|
||||
rowSubtract(rowIndex, rowIndex, v);
|
||||
}
|
||||
|
||||
/**
|
||||
* Subtract a line from each line of this matrix in place.
|
||||
*
|
||||
* @param rowIndex
|
||||
* @param B
|
||||
*/
|
||||
public void rowSubtract(double[] v) {
|
||||
if ((v.length != n)) throw new IllegalArgumentException("Invalid matrix dimensions for rowMinus!");
|
||||
rowSubtract(0, m-1, v);
|
||||
}
|
||||
|
||||
private void rowSubtract(int start, int end, double[] v) {
|
||||
for (int i=start; i<=end; i++) Mathematics.vvSub(A[i], v, A[i]);
|
||||
}
|
||||
|
||||
}
|
||||
|
@ -1,8 +1,10 @@
|
||||
package wsi.ra.math;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.Arrays;
|
||||
import java.util.Random;
|
||||
|
||||
import eva2.tools.EVAHELP;
|
||||
import eva2.tools.Mathematics;
|
||||
|
||||
public class RNG extends Random {
|
||||
@ -165,8 +167,9 @@ public class RNG extends Random {
|
||||
public static double randomDouble(double lo,double hi) {
|
||||
return (hi-lo)*random.nextDouble()+lo;
|
||||
}
|
||||
|
||||
/**
|
||||
*
|
||||
* Create a uniform random vector within the given bounds.
|
||||
*/
|
||||
public static double[] randomDoubleArray(double[] lo,double[] hi) {
|
||||
double[] xin = new double[lo.length];
|
||||
@ -174,14 +177,35 @@ public class RNG extends Random {
|
||||
xin[i] = (hi[i]-lo[i])*random.nextDouble()+lo[i];
|
||||
return xin;
|
||||
}
|
||||
|
||||
/**
|
||||
*
|
||||
* Create a uniform random vector within the given bounds.
|
||||
*/
|
||||
public static double[] randomDoubleArray(double lo,double hi,int size) {
|
||||
double[] xin = new double[size];
|
||||
for (int i=0;i<size;i++)
|
||||
xin[i] = (hi-lo)*random.nextDouble()+lo;
|
||||
return xin;
|
||||
public static double[] randomDoubleArray(double[][] range) {
|
||||
double[] xin = new double[range.length];
|
||||
for (int i=0;i<xin.length;i++)
|
||||
xin[i] = (range[i][1]-range[i][0])*random.nextDouble()+range[i][0];
|
||||
return xin;
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a uniform random double vector within the given bounds (inclusive) in every dimension.
|
||||
*
|
||||
* @param lower
|
||||
* @param upper
|
||||
* @param size
|
||||
* @return
|
||||
*/
|
||||
public static double[] randomDoubleArray(double lower, double upper, int size) {
|
||||
double[] result = new double[size];
|
||||
for (int i = 0; i < result.length; i++) {
|
||||
result[i] = RNG.randomDouble(lower, upper);
|
||||
}
|
||||
return result;
|
||||
// double[] xin = new double[size];
|
||||
// for (int i=0;i<size;i++)
|
||||
// xin[i] = (hi-lo)*random.nextDouble()+lo;
|
||||
// return xin;
|
||||
}
|
||||
|
||||
/**
|
||||
@ -193,6 +217,23 @@ public class RNG extends Random {
|
||||
xin[i] = (hi[i]-lo[i])*random.nextDouble()+lo[i];
|
||||
return xin;
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a uniform random integer vector within the given bounds (inclusive) in every dimension.
|
||||
*
|
||||
* @param n
|
||||
* @param lower
|
||||
* @param upper
|
||||
* @return
|
||||
*/
|
||||
public static int[] randomIntArray(int lower, int upper, int size) {
|
||||
int[] result = new int[size];
|
||||
for (int i = 0; i < result.length; i++) {
|
||||
result[i] = RNG.randomInt(lower, upper);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
*
|
||||
*/
|
||||
@ -305,17 +346,38 @@ public class RNG extends Random {
|
||||
* Create a normalized random vector with gaussian random double entries.
|
||||
*
|
||||
* @param n
|
||||
* @param dev
|
||||
* @return
|
||||
*/
|
||||
public static double[] gaussianVector(int n, double dev) {
|
||||
public static double[] gaussianVector(int n, double dev, boolean normalize) {
|
||||
double[] result = new double[n];
|
||||
gaussianVector(dev, result, normalize);
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a normalized random vector with gaussian random double entries.
|
||||
*
|
||||
* @param n
|
||||
* @return
|
||||
*/
|
||||
public static double[] gaussianVector(double dev, double[] result, boolean normalize) {
|
||||
for (int i = 0; i < result.length; i++) {
|
||||
result[i] = RNG.gaussianDouble(dev);
|
||||
}
|
||||
Mathematics.normVect(result, result);
|
||||
if (normalize) Mathematics.normVect(result, result);
|
||||
return result;
|
||||
}
|
||||
|
||||
public static void main(String[] args) {
|
||||
double[] v = new double[2];
|
||||
for (int i=0; i<1000; i++) {
|
||||
gaussianVector(1., v, false);
|
||||
EVAHELP.logString(Arrays.toString(v)+"\n", "randtest.dat");
|
||||
// System.out.println(Arrays.toString(v));
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a uniform random double vector within the given bounds (inclusive) in every dimension.
|
||||
*
|
||||
@ -324,28 +386,13 @@ public class RNG extends Random {
|
||||
* @param upper
|
||||
* @return
|
||||
*/
|
||||
public static double[] randomVector(int n, double lower, double upper) {
|
||||
double[] result = new double[n];
|
||||
for (int i = 0; i < result.length; i++) {
|
||||
result[i] = RNG.randomDouble(lower, upper);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
// public static double[] randomVector(int n, double lower, double upper) {
|
||||
// double[] result = new double[n];
|
||||
// for (int i = 0; i < result.length; i++) {
|
||||
// result[i] = RNG.randomDouble(lower, upper);
|
||||
// }
|
||||
// return result;
|
||||
// }
|
||||
|
||||
/**
|
||||
* Create a uniform random integer vector within the given bounds (inclusive) in every dimension.
|
||||
*
|
||||
* @param n
|
||||
* @param lower
|
||||
* @param upper
|
||||
* @return
|
||||
*/
|
||||
public static int[] randomVector(int n, int lower, int upper) {
|
||||
int[] result = new int[n];
|
||||
for (int i = 0; i < result.length; i++) {
|
||||
result[i] = RNG.randomInt(lower, upper);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
}
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user