Moving funny fractal problem to Probs repos.

This commit is contained in:
Marcel Kronfeld 2010-02-25 10:25:55 +00:00
parent a37f030756
commit 66e1fc7e8b

View File

@ -1,113 +0,0 @@
package eva2.server.go.problems;
import static java.lang.Math.PI;
import static java.lang.Math.sin;
/**
* This is just an example function with no real use except that it has a
* nice plot to it. It doesnt make much sense for optimization, so Ill
* hide it for now.
* If you wonder what this function actually represents, you may want to
* try to display a cut with x[2]=1; x[3]=1.
*
* @author mkron
*
*/
public class FunnyProblem extends AbstractProblemDoubleOffset {
int iterations = 100;
// public static final boolean hideFromGOE = true;
public FunnyProblem() {}
public FunnyProblem(FunnyProblem o) {
iterations = o.iterations;
}
public Object clone() {
return (Object) new FunnyProblem(this);
}
/** This method allows you to evaluate a double[] to determine the fitness
* @param x The n-dimensional input vector
* @return The m-dimensional output vector.
*/
public double[] eval(double[] x) {
x = rotateMaybe(x);
double[] c = new double[2];
// c[0]= (x[0])*getXOffSet();
// c[1]= (x[1])*Math.sin((Math.PI/2)*getYOffSet());
c[0] = x[0]*x[2];
c[1] = x[1] * sin( PI / 2.0 * x[3]);
// c[0]= (x[0]+(x[2]/10))*getXOffSet();
// c[1]= (x[1]+(x[3]/10))*Math.sin(Math.PI/2*getYOffSet());
// c[0]= (x[0]*(1-x[2]/10));
// c[1]= (x[1]*(1-x[3]/10));
double[] result = new double[1];
result[0] = flatten(evalRec(x, c, iterations));
return result;
}
private double[] evalRec(double[] x, double[] c, int n) {
if (n==0) return x;
else return evalRec(addComplex(squareComplex(x),c), c, n-1);
}
private double[] squareComplex(double[] x) {
double[] result = new double[2];
result[0] = (x[0]*x[0])-(x[1]*x[1]);
result[1] = (2*x[0]*x[1]);
return result;
}
private double[] addComplex(double[] x, double[] y) {
double[] result = new double[2];
result[0] = x[0] + y[0];
result[1] = x[1] + y[1];
return result;
}
private double flatten(double[] x) {
double len = Math.sqrt((x[0]*x[0])+(x[1]*x[1]));
double ang = Math.atan2(x[1],x[0]);
if (Double.isNaN(len) || (len > 1000.)) len = 1000.;
return len;
// return 0.5+0.5*t*(2*b*a*u(x/a));
// return 1/(2*Math.PI*ang);
// return +Math.abs(x[0])+Math.abs(x[1]);
}
public int getProblemDimension() {
return 4;
}
public String getName() {
return "FunnyProblem";
}
public double getRangeLowerBound(int dim) {
if (dim == 0) return -2.5;
else return -1.5;
}
public double getRangeUpperBound(int dim) {
return 1.5;
}
/**
* @return the iterations
*/
public int getIterations() {
return iterations;
}
/**
* @param iterations the iterations to set
*/
public void setIterations(int iterations) {
this.iterations = iterations;
}
}