Implemented the LTGA, there are still some errors with this optimizer
This commit is contained in:
parent
ee17d01f53
commit
7a6c814a56
397
src/eva2/server/go/strategies/LTGA.java
Normal file
397
src/eva2/server/go/strategies/LTGA.java
Normal file
@ -0,0 +1,397 @@
|
|||||||
|
package eva2.server.go.strategies;
|
||||||
|
|
||||||
|
import java.util.BitSet;
|
||||||
|
import java.util.Collection;
|
||||||
|
import java.util.HashSet;
|
||||||
|
import java.util.LinkedList;
|
||||||
|
import java.util.Set;
|
||||||
|
import java.util.Stack;
|
||||||
|
import java.util.logging.Level;
|
||||||
|
import java.util.logging.Logger;
|
||||||
|
|
||||||
|
import eva2.gui.BeanInspector;
|
||||||
|
import eva2.server.go.InterfacePopulationChangedEventListener;
|
||||||
|
import eva2.server.go.individuals.AbstractEAIndividual;
|
||||||
|
import eva2.server.go.individuals.InterfaceDataTypeBinary;
|
||||||
|
import eva2.server.go.individuals.InterfaceGAIndividual;
|
||||||
|
import eva2.server.go.populations.InterfaceSolutionSet;
|
||||||
|
import eva2.server.go.populations.Population;
|
||||||
|
import eva2.server.go.populations.SolutionSet;
|
||||||
|
import eva2.server.go.problems.AbstractOptimizationProblem;
|
||||||
|
import eva2.server.go.problems.BKnapsackProblem;
|
||||||
|
import eva2.server.go.problems.InterfaceOptimizationProblem;
|
||||||
|
import eva2.tools.Pair;
|
||||||
|
import eva2.tools.math.SpecialFunction;
|
||||||
|
|
||||||
|
public class LTGA implements InterfaceOptimizer, java.io.Serializable, InterfacePopulationChangedEventListener{
|
||||||
|
|
||||||
|
private static final Logger LOGGER = Logger.getLogger(BOA.class.getName());
|
||||||
|
transient private InterfacePopulationChangedEventListener m_Listener = null;
|
||||||
|
private String m_Identifier = "LTGA";
|
||||||
|
|
||||||
|
private int probDim = 8;
|
||||||
|
private int fitCrit = -1;
|
||||||
|
private int popSize = 50;
|
||||||
|
private Population population = new Population();
|
||||||
|
private AbstractOptimizationProblem problem = new BKnapsackProblem();
|
||||||
|
private AbstractEAIndividual template = null;
|
||||||
|
private int generationCycle = 500;
|
||||||
|
|
||||||
|
public LTGA(){
|
||||||
|
}
|
||||||
|
|
||||||
|
public LTGA(LTGA l){
|
||||||
|
this.m_Listener = l.m_Listener;
|
||||||
|
this.m_Identifier = l.m_Identifier;
|
||||||
|
this.probDim = l.probDim;
|
||||||
|
this.popSize = l.popSize;
|
||||||
|
this.population = (Population)l.population.clone();
|
||||||
|
this.problem = (AbstractOptimizationProblem)l.problem.clone();
|
||||||
|
this.template = (AbstractEAIndividual) template.clone();
|
||||||
|
}
|
||||||
|
|
||||||
|
public Object clone() {
|
||||||
|
return new LTGA(this);
|
||||||
|
}
|
||||||
|
|
||||||
|
@Override
|
||||||
|
public String getName() {
|
||||||
|
return "Linkage Tree Genetic Algorithm";
|
||||||
|
}
|
||||||
|
|
||||||
|
public static String globalInfo() {
|
||||||
|
return "Basic implementation of the Linkage Tree Genetic Algorithm based on the works by Dirk Thierens.";
|
||||||
|
}
|
||||||
|
|
||||||
|
@Override
|
||||||
|
public void addPopulationChangedEventListener(
|
||||||
|
InterfacePopulationChangedEventListener ea) {
|
||||||
|
this.m_Listener = ea;
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
@Override
|
||||||
|
public boolean removePopulationChangedEventListener(
|
||||||
|
InterfacePopulationChangedEventListener ea) {
|
||||||
|
if (m_Listener == ea) {
|
||||||
|
m_Listener = null;
|
||||||
|
return true;
|
||||||
|
} else
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
private void defaultInit(){
|
||||||
|
if (population == null) {
|
||||||
|
this.population = new Population(this.popSize);
|
||||||
|
} else {
|
||||||
|
this.population.setTargetPopSize(this.popSize);
|
||||||
|
}
|
||||||
|
this.template = this.problem.getIndividualTemplate();
|
||||||
|
if (!(template instanceof InterfaceDataTypeBinary)) {
|
||||||
|
LOGGER.log(Level.WARNING, "Requiring binary data!");
|
||||||
|
} else {
|
||||||
|
Object dim = BeanInspector.callIfAvailable(problem,
|
||||||
|
"getProblemDimension", null);
|
||||||
|
if (dim == null)
|
||||||
|
LOGGER.log(Level.WARNING, "Coudn't get problem dimension!");
|
||||||
|
probDim = (Integer) dim;
|
||||||
|
((InterfaceDataTypeBinary) this.template).SetBinaryGenotype(new BitSet(probDim));
|
||||||
|
}
|
||||||
|
this.population.addPopulationChangedEventListener(this);
|
||||||
|
this.population.setNotifyEvalInterval(this.generationCycle);
|
||||||
|
}
|
||||||
|
|
||||||
|
private static BitSet getBinaryData(AbstractEAIndividual indy) {
|
||||||
|
if (indy instanceof InterfaceGAIndividual)
|
||||||
|
return ((InterfaceGAIndividual) indy).getBGenotype();
|
||||||
|
else if (indy instanceof InterfaceDataTypeBinary)
|
||||||
|
return ((InterfaceDataTypeBinary) indy).getBinaryData();
|
||||||
|
else {
|
||||||
|
throw new RuntimeException(
|
||||||
|
"Unable to get binary representation for "
|
||||||
|
+ indy.getClass());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
@Override
|
||||||
|
public void init() {
|
||||||
|
defaultInit();
|
||||||
|
this.problem.initPopulation(this.population);
|
||||||
|
this.evaluatePopulation(this.population);
|
||||||
|
this.firePropertyChangedEvent(Population.nextGenerationPerformed);
|
||||||
|
}
|
||||||
|
|
||||||
|
private void evaluatePopulation(Population pop) {
|
||||||
|
for (int i = 0; i < pop.size(); i++) {
|
||||||
|
evaluate(pop.getEAIndividual(i));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* evaluate the given Individual and increments the counter. if the
|
||||||
|
* individual is null, only the counter is incremented
|
||||||
|
*
|
||||||
|
* @param indy
|
||||||
|
* the individual you want to evaluate
|
||||||
|
*/
|
||||||
|
private void evaluate(AbstractEAIndividual indy) {
|
||||||
|
// evaluate the given individual if it is not null
|
||||||
|
if (indy == null) {
|
||||||
|
LOGGER.log(Level.WARNING, "tried to evaluate null");
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
this.problem.evaluate(indy);
|
||||||
|
// increment the number of evaluations
|
||||||
|
this.population.incrFunctionCalls();
|
||||||
|
}
|
||||||
|
|
||||||
|
@Override
|
||||||
|
public void initByPopulation(Population pop, boolean reset) {
|
||||||
|
if (reset) {
|
||||||
|
init();
|
||||||
|
} else {
|
||||||
|
defaultInit();
|
||||||
|
this.population = pop;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
private Stack<Set<Integer>> buildLinkageTree(){
|
||||||
|
// the final tree
|
||||||
|
Stack<Set<Integer>> linkageTree = new Stack<Set<Integer>>();
|
||||||
|
// the stack to cluster here clusters can be removed
|
||||||
|
Stack<Set<Integer>> workingStack = new Stack<Set<Integer>>();
|
||||||
|
// add the problem variables to the stacks
|
||||||
|
for(int i=0; i<this.probDim; i++){
|
||||||
|
Set<Integer> s1 = new HashSet<Integer>();
|
||||||
|
Set<Integer> s2 = new HashSet<Integer>();
|
||||||
|
s1.add(i);
|
||||||
|
s2.add(i);
|
||||||
|
linkageTree.add(s1);
|
||||||
|
workingStack.add(s2);
|
||||||
|
}
|
||||||
|
// double[] probMass = calculateProbabilityMassFunction();
|
||||||
|
// until there is only one cluster left
|
||||||
|
while(workingStack.size()>1){
|
||||||
|
Pair<Set<Integer>, Set<Integer>> toCluster = findNearestClusters(workingStack);
|
||||||
|
// remove the second cluster from the working set
|
||||||
|
workingStack.remove(toCluster.tail);
|
||||||
|
// add all elements from the second cluster to the first one
|
||||||
|
toCluster.head.addAll(toCluster.tail);
|
||||||
|
// add the combined cluster to the linkage tree
|
||||||
|
linkageTree.add(toCluster.head);
|
||||||
|
}
|
||||||
|
return linkageTree;
|
||||||
|
}
|
||||||
|
|
||||||
|
private Pair<Set<Integer>, Set<Integer>> findNearestClusters(Stack<Set<Integer>> stack) {
|
||||||
|
Set<Integer> bestI = new HashSet<Integer>();
|
||||||
|
Set<Integer> bestJ = new HashSet<Integer>();
|
||||||
|
double bestScore = Double.MAX_VALUE;
|
||||||
|
for(int i=0; i<stack.size(); i++){
|
||||||
|
Set<Integer> s1 = stack.get(i);
|
||||||
|
for(int j=i+1; j<stack.size(); j++){
|
||||||
|
Set<Integer> s2 = stack.get(j);
|
||||||
|
double currDist = calculateDistance(s1, s2);
|
||||||
|
// better cluster found
|
||||||
|
if(currDist < bestScore){
|
||||||
|
bestI = s1;
|
||||||
|
bestJ = s2;
|
||||||
|
bestScore = currDist;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
// return the best pair
|
||||||
|
return new Pair<Set<Integer>, Set<Integer>>(bestI, bestJ);
|
||||||
|
}
|
||||||
|
|
||||||
|
private double calculateDistance(Set<Integer> s1, Set<Integer> s2) {
|
||||||
|
double entropy1 = calculateEntropy(s1);
|
||||||
|
double entropy2 = calculateEntropy(s2);
|
||||||
|
Set<Integer> combined = new HashSet<Integer>();
|
||||||
|
combined.addAll(s1);
|
||||||
|
combined.addAll(s2);
|
||||||
|
double entropy3 = calculateEntropy(combined);
|
||||||
|
return 2 - ((entropy1 + entropy2) / (entropy3));
|
||||||
|
}
|
||||||
|
|
||||||
|
private double calculateEntropy(Set<Integer> s){
|
||||||
|
double entropy = 0.0;
|
||||||
|
// for possible states {0,1} do
|
||||||
|
for(int i=0; i<=1; i++){
|
||||||
|
int count = 0;
|
||||||
|
// for every individual
|
||||||
|
for(int k=0; k<this.popSize; k++){
|
||||||
|
BitSet b = getBinaryData(this.population.getEAIndividual(k));
|
||||||
|
boolean addCount = true;
|
||||||
|
// for every specified Bit
|
||||||
|
for(Integer value: s){
|
||||||
|
// is the bit not set correctly
|
||||||
|
if(b.get(value) != (i==1)){
|
||||||
|
addCount = false;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if(addCount){
|
||||||
|
count++;
|
||||||
|
}
|
||||||
|
addCount = true;
|
||||||
|
}
|
||||||
|
entropy += ((double)count) * SpecialFunction.logb((double)count, 2.0);
|
||||||
|
count = 0;
|
||||||
|
}
|
||||||
|
return entropy;
|
||||||
|
}
|
||||||
|
|
||||||
|
@Override
|
||||||
|
public void optimize() {
|
||||||
|
this.problem.evaluatePopulationStart(this.population);
|
||||||
|
Stack<Set<Integer>> linkageTree = buildLinkageTree();
|
||||||
|
Population newPop = new Population(this.popSize);
|
||||||
|
for(int i=0; i<(this.popSize/2); i++){
|
||||||
|
Population indies = this.population.getRandNIndividuals(2);
|
||||||
|
Population newIndies = buildNewIndies(indies, linkageTree);
|
||||||
|
newPop.addAll(newIndies);
|
||||||
|
}
|
||||||
|
this.population.clear();
|
||||||
|
this.population.addAll(newPop);
|
||||||
|
this.problem.evaluatePopulationEnd(this.population);
|
||||||
|
}
|
||||||
|
|
||||||
|
private Population buildNewIndies(Population indies,
|
||||||
|
Stack<Set<Integer>> linkageTree) {
|
||||||
|
if(indies.size() != 2){
|
||||||
|
return indies;
|
||||||
|
}
|
||||||
|
AbstractEAIndividual indy1 = indies.getEAIndividual(0);
|
||||||
|
AbstractEAIndividual indy2 = indies.getEAIndividual(1);
|
||||||
|
BitSet gen1 = getBinaryData(indy1);
|
||||||
|
BitSet gen2 = getBinaryData(indy2);
|
||||||
|
for(Set<Integer> mask: linkageTree){
|
||||||
|
BitSet newGene1 = (BitSet) gen1.clone();
|
||||||
|
BitSet newGene2 = (BitSet) gen2.clone();
|
||||||
|
boolean same = true;
|
||||||
|
for(Integer exchange: mask){
|
||||||
|
if(newGene1.get(exchange) != newGene2.get(exchange)){
|
||||||
|
same = false;
|
||||||
|
}
|
||||||
|
newGene1.set(exchange, gen2.get(exchange));
|
||||||
|
newGene2.set(exchange, gen1.get(exchange));
|
||||||
|
}
|
||||||
|
if(!same){
|
||||||
|
AbstractEAIndividual newIndy1 = (AbstractEAIndividual) this.template.clone();
|
||||||
|
AbstractEAIndividual newIndy2 = (AbstractEAIndividual) this.template.clone();
|
||||||
|
((InterfaceDataTypeBinary) newIndy1).SetBinaryGenotype(newGene1);
|
||||||
|
((InterfaceDataTypeBinary) newIndy2).SetBinaryGenotype(newGene2);
|
||||||
|
evaluate(newIndy1);
|
||||||
|
evaluate(newIndy2);
|
||||||
|
if(Math.min(newIndy1.getFitness(0), newIndy2.getFitness(0)) < Math.min(indy1.getFitness(0), indy2.getFitness(0))){
|
||||||
|
indy1 = newIndy1;
|
||||||
|
indy2 = newIndy2;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
Population result = new Population(2);
|
||||||
|
result.add(indy1);
|
||||||
|
result.add(indy2);
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Something has changed
|
||||||
|
*/
|
||||||
|
protected void firePropertyChangedEvent(String name) {
|
||||||
|
if (this.m_Listener != null)
|
||||||
|
this.m_Listener.registerPopulationStateChanged(this, name);
|
||||||
|
}
|
||||||
|
|
||||||
|
@Override
|
||||||
|
public Population getPopulation() {
|
||||||
|
return this.population;
|
||||||
|
}
|
||||||
|
|
||||||
|
@Override
|
||||||
|
public void setPopulation(Population pop) {
|
||||||
|
this.population = pop;
|
||||||
|
}
|
||||||
|
|
||||||
|
@Override
|
||||||
|
public InterfaceSolutionSet getAllSolutions() {
|
||||||
|
return new SolutionSet(this.population);
|
||||||
|
}
|
||||||
|
|
||||||
|
@Override
|
||||||
|
public void SetIdentifier(String name) {
|
||||||
|
this.m_Identifier = name;
|
||||||
|
}
|
||||||
|
|
||||||
|
@Override
|
||||||
|
public String getIdentifier() {
|
||||||
|
return this.m_Identifier;
|
||||||
|
}
|
||||||
|
|
||||||
|
@Override
|
||||||
|
public void SetProblem(InterfaceOptimizationProblem problem) {
|
||||||
|
this.problem = (AbstractOptimizationProblem) problem;
|
||||||
|
}
|
||||||
|
|
||||||
|
@Override
|
||||||
|
public InterfaceOptimizationProblem getProblem() {
|
||||||
|
return this.problem;
|
||||||
|
}
|
||||||
|
|
||||||
|
@Override
|
||||||
|
public String getStringRepresentation() {
|
||||||
|
return "Linkage Tree GA";
|
||||||
|
}
|
||||||
|
|
||||||
|
@Override
|
||||||
|
public void freeWilly() {
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
@SuppressWarnings("deprecation")
|
||||||
|
@Override
|
||||||
|
public void registerPopulationStateChanged(Object source, String name) {
|
||||||
|
// The events of the interim hill climbing population will be caught here
|
||||||
|
if (name.compareTo(Population.funCallIntervalReached) == 0) {
|
||||||
|
// set funcalls to real value
|
||||||
|
this.population.SetFunctionCalls(((Population)source).getFunctionCalls());
|
||||||
|
this.firePropertyChangedEvent(Population.nextGenerationPerformed);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
public static void main(String[] args) {
|
||||||
|
LTGA ltga = new LTGA();
|
||||||
|
ltga.init();
|
||||||
|
ltga.optimize();
|
||||||
|
System.out.println(ltga.popSize);
|
||||||
|
Population p = ltga.getPopulation();
|
||||||
|
System.out.println(p.getFunctionCalls()+"\t"+p.size());
|
||||||
|
System.out.println(p.getBestEAIndividual().getStringRepresentation());
|
||||||
|
ltga.optimize();
|
||||||
|
p = ltga.getPopulation();
|
||||||
|
System.out.println(p.getFunctionCalls()+"\t"+p.size());
|
||||||
|
System.out.println(p.getBestEAIndividual().getStringRepresentation());
|
||||||
|
ltga.optimize();
|
||||||
|
p = ltga.getPopulation();
|
||||||
|
System.out.println(p.getFunctionCalls()+"\t"+p.size());
|
||||||
|
System.out.println(p.getBestEAIndividual().getStringRepresentation());
|
||||||
|
ltga.optimize();
|
||||||
|
p = ltga.getPopulation();
|
||||||
|
System.out.println(p.getFunctionCalls()+"\t"+p.size());
|
||||||
|
System.out.println(p.getBestEAIndividual().getStringRepresentation());
|
||||||
|
ltga.optimize();
|
||||||
|
p = ltga.getPopulation();
|
||||||
|
System.out.println(p.getFunctionCalls()+"\t"+p.size());
|
||||||
|
System.out.println(p.getBestEAIndividual().getStringRepresentation());
|
||||||
|
ltga.optimize();
|
||||||
|
p = ltga.getPopulation();
|
||||||
|
System.out.println(p.getFunctionCalls()+"\t"+p.size());
|
||||||
|
System.out.println(p.getBestEAIndividual().getStringRepresentation());
|
||||||
|
ltga.optimize();
|
||||||
|
p = ltga.getPopulation();
|
||||||
|
System.out.println(p.getFunctionCalls()+"\t"+p.size());
|
||||||
|
System.out.println(p.getBestEAIndividual().getStringRepresentation());
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
Loading…
x
Reference in New Issue
Block a user