Importing release version 322 from old repos
13
resources/ConvergenceTerminator.html
Normal file
@@ -0,0 +1,13 @@
|
||||
<html>
|
||||
<head>
|
||||
<title>Convergence Terminator</title>
|
||||
</head>
|
||||
<body>
|
||||
<h1 align="center">Convergence Terminator</h1>
|
||||
<center>
|
||||
</center><br>
|
||||
The convergence terminator stops the optimization, when there has been hardly
|
||||
any change in the best population fitness (within percentual range) for a certain
|
||||
time, given in generations or fitness calls.
|
||||
</body>
|
||||
</html>
|
15
resources/Default.html
Normal file
@@ -0,0 +1,15 @@
|
||||
<html>
|
||||
<head>
|
||||
<title>Default page</title>
|
||||
</head>
|
||||
<body>
|
||||
<EFBFBD>
|
||||
<h1 align="center">HTML description file is missing</h1>
|
||||
<center>
|
||||
</center><br>
|
||||
Unfortunately there is no additional HTML description
|
||||
file to this class. Please refer to the JOptDocumentation
|
||||
file or the JavaDoc for more information on this class.
|
||||
|
||||
</body>
|
||||
</html>
|
13
resources/EPSILON_SVM.html
Normal file
@@ -0,0 +1,13 @@
|
||||
<html>
|
||||
<head>
|
||||
<title>Epsilon SV-Regression</title>
|
||||
</head>
|
||||
<body>
|
||||
<EFBFBD>
|
||||
<h1 align="center">Epsilon SV-Regression</h1>
|
||||
<center>
|
||||
</center><br>
|
||||
Please read the JavaEvA manual for a detailed description.
|
||||
</ul>
|
||||
</body>
|
||||
</html>
|
16
resources/ESIndividual.html
Normal file
@@ -0,0 +1,16 @@
|
||||
<html>
|
||||
<head>
|
||||
<title>ESIndividual</title>
|
||||
</head>
|
||||
<body>
|
||||
<EFBFBD>
|
||||
<h1 align="center">ESIndividual</h1>
|
||||
<center>
|
||||
</center><br>
|
||||
This element represents the properties of an individual.
|
||||
The most important evolutionary operator of an ES is
|
||||
the mutation of the objective variables representing
|
||||
the solution of the problem, which is responsible
|
||||
for the self-adaptation capability of the ES
|
||||
</body>
|
||||
</html>
|
18
resources/ESInitPopulationDOptimal.html
Normal file
@@ -0,0 +1,18 @@
|
||||
<html>
|
||||
<head>
|
||||
<title>f_1 : Sphere function</title>
|
||||
</head>
|
||||
<body>
|
||||
<EFBFBD>
|
||||
<h1 align="center">ESInitPopulationSpaceFilling</h1>
|
||||
<center>
|
||||
</center><br>
|
||||
ESPara contains the information describing the Evolution Strategy:
|
||||
<ul>
|
||||
<li>The problem to be solved.</li>
|
||||
<li>A seed value for the random number genarator.</li>
|
||||
<li>A termination criterium for the algorithm.</li>
|
||||
<li>The used population.</li>
|
||||
</ul>
|
||||
</body>
|
||||
</html>
|
10
resources/ESInitPopulationRandom.html
Normal file
@@ -0,0 +1,10 @@
|
||||
<html>
|
||||
<head>
|
||||
<title>ESInitPopulationRandom</title>
|
||||
</head>
|
||||
<body>
|
||||
<EFBFBD>
|
||||
<h1 align="center">ESInitPopulationRandom</h1>
|
||||
<center>
|
||||
</center><br>
|
||||
Here you can specify the number of individuals, which are randomly initialized.
|
18
resources/ESInitPopulationSpaceFilling.html
Normal file
@@ -0,0 +1,18 @@
|
||||
<html>
|
||||
<head>
|
||||
<title>f_1 : Sphere function</title>
|
||||
</head>
|
||||
<body>
|
||||
<EFBFBD>
|
||||
<h1 align="center">ESInitPopulationSpaceFilling</h1>
|
||||
<center>
|
||||
</center><br>
|
||||
ESPara contains the information describing the Evolution Strategy:
|
||||
<ul>
|
||||
<li>The problem to be solved.</li>
|
||||
<li>A seed value for the random number genarator.</li>
|
||||
<li>A termination criterium for the algorithm.</li>
|
||||
<li>The used population.</li>
|
||||
</ul>
|
||||
</body>
|
||||
</html>
|
17
resources/ESPara.html
Normal file
@@ -0,0 +1,17 @@
|
||||
<html>
|
||||
<head>
|
||||
<title>f_1 : Sphere function</title>
|
||||
</head>
|
||||
<body><EFBFBD>
|
||||
<h1 align="center">Parameters for the Evolution Strategy</h1>
|
||||
<center>
|
||||
</center><br>
|
||||
The Java Class ESPara contains the information describing an Evolution Strategy (ES):
|
||||
<ul>
|
||||
<li>The problem to be solved.</li>
|
||||
<li>A seed value for the random number generator.</li>
|
||||
<li>A termination criterion for the algorithm.</li>
|
||||
<li>The ES population.</li>
|
||||
</ul>
|
||||
</body>
|
||||
</html>
|
18
resources/ESPopulation.html
Normal file
@@ -0,0 +1,18 @@
|
||||
<html>
|
||||
<head>
|
||||
<title>ESPopulation</title>
|
||||
</head>
|
||||
<body><EFBFBD>
|
||||
<h1 align="center">ESPopulation</h1>
|
||||
<center>
|
||||
</center><br>
|
||||
ESPopulation contains the information describing an Evolution Strategy (ES):
|
||||
<ul>
|
||||
<li>A prototype of an individual (contains mutation operator).</li>
|
||||
<li>The population size of the parents: lambda.</li>
|
||||
<li>The population size of the children: mu.</li>
|
||||
<li>A recombination operator.</li>
|
||||
<li>A fitness based selection operator.</li>
|
||||
</ul>
|
||||
</body>
|
||||
</html>
|
18
resources/ESRecombination.html
Normal file
@@ -0,0 +1,18 @@
|
||||
<html>
|
||||
<head>
|
||||
<title>ESRecombination</title>
|
||||
</head>
|
||||
<body>
|
||||
<EFBFBD>
|
||||
<h1 align="center">ESRecombination</h1>
|
||||
<center>
|
||||
</center><br>
|
||||
The recombination operator has the following editable properties:
|
||||
<ul>
|
||||
<li>strategy for recombination of the strategy parameters of the mutation operators..</li>
|
||||
<li>strategy for recombination of the objectives of an individual..</li>
|
||||
<li>rho = number of parents, which recombinate to one offspring individual..</li>
|
||||
<li>strategy for selecting the input individuals for one recombination.</li>
|
||||
</ul>
|
||||
</body>
|
||||
</html>
|
12
resources/ESSelectionStrategyComma.html
Normal file
@@ -0,0 +1,12 @@
|
||||
<html>
|
||||
<head>
|
||||
<title>ES Comma Selection</title>
|
||||
</head>
|
||||
<body>
|
||||
<EFBFBD>
|
||||
<h1 align="center">ES Comma Selection Operator</h1>
|
||||
<center>
|
||||
</center><br>
|
||||
The best mu individuals are selected from lambda offspring individuals.
|
||||
</body>
|
||||
</html>
|
26
resources/ESSelectionStrategyMedian.html
Normal file
@@ -0,0 +1,26 @@
|
||||
<html>
|
||||
<head>
|
||||
<title>ES - Median Selection </title>
|
||||
</head>
|
||||
<body>
|
||||
<EFBFBD>
|
||||
<h1 align="center">ES Median Selection Strategy</h1>
|
||||
<center>
|
||||
</center><br>
|
||||
The main application field of the Median Selection Strategy
|
||||
operator are steady state algorithms.
|
||||
A standard steady-state ES is equivalent to a (mu + 1) ES.
|
||||
Only one individual is generated and evaluated
|
||||
at each step and gets immediately integrated into the population.
|
||||
Compared to generation based algorithms the information of
|
||||
new evaluated individuals can be integrated directly into the optimization process.
|
||||
The idea is to approximate the selection mechanism
|
||||
of a standard (mu,lambda) ES, by
|
||||
using a fitness buffer containing
|
||||
fitness values of the last n evaluations.
|
||||
Given a relative rate of acceptance r=mu\lambda.
|
||||
A newly evaluated individual substitutes the worst individual
|
||||
of the population, if it has a better fitness than the r*n best individuals
|
||||
in the buffer.
|
||||
</body>
|
||||
</html>
|
18
resources/ESSelectionStrategyMixed.html
Normal file
@@ -0,0 +1,18 @@
|
||||
<html>
|
||||
<head>
|
||||
<title>f_1 : Sphere function</title>
|
||||
</head>
|
||||
<body>
|
||||
<EFBFBD>
|
||||
<h1 align="center">ESSelectionStrategyMedian</h1>
|
||||
<center>
|
||||
</center><br>
|
||||
ESPara contains the information describing the Evolution Strategy:
|
||||
<ul>
|
||||
<li>The problem to be solved.</li>
|
||||
<li>A seed value for the random number genarator.</li>
|
||||
<li>A termination criterium for the algorithm.</li>
|
||||
<li>The used population.</li>
|
||||
</ul>
|
||||
</body>
|
||||
</html>
|
13
resources/ESSelectionStrategyPlus.html
Normal file
@@ -0,0 +1,13 @@
|
||||
<html>
|
||||
<head>
|
||||
<title>Plus Selection Strategy</title>
|
||||
</head>
|
||||
<body>
|
||||
<EFBFBD>
|
||||
<h1 align="center">ES Plus Selection Operator</h1>
|
||||
<center>
|
||||
</center><br>
|
||||
The best mu individuals are selected from the
|
||||
aggregation of the lambda offspring individuals and the mu parents.
|
||||
</body>
|
||||
</html>
|
21
resources/EvolutionStrategies.html
Normal file
@@ -0,0 +1,21 @@
|
||||
<html>
|
||||
<head>
|
||||
<title>Evolution Strategy - ES</title>
|
||||
</head>
|
||||
<body>
|
||||
<EFBFBD>
|
||||
<h1 align="center">Evolution Strategy - ES</h1>
|
||||
<center>
|
||||
</center><br>
|
||||
An ES works on a population of real valued solutions
|
||||
by repeated use of evolutionary operators like reproduction,
|
||||
recombination and mutation (see pseudocode in figures.
|
||||
lambda offspring individuals are generated from mu parents
|
||||
by recombination and mutation. After evaluating the fitness of the lambda
|
||||
offspring individuals, mu individuals with the best fitness are
|
||||
selected by a comma-strategy to build the parent population for the next generation.
|
||||
On the other hand, a plus-strategy selects the best mu individuals
|
||||
from the aggregation of parents and offspring individuals.
|
||||
The properties of ES are given in the population sub frame.
|
||||
</body>
|
||||
</html>
|
24
resources/F1Problem.html
Normal file
@@ -0,0 +1,24 @@
|
||||
<html>
|
||||
<head>
|
||||
<title>f_1 : Sphere function</title>
|
||||
</head>
|
||||
<body><EFBFBD>
|
||||
<h1 align="center">The Sphere function</h1>
|
||||
<center>
|
||||
<img src="images/f1tex.jpg" width="85" height="95" border="0" align="center">
|
||||
</center><br>
|
||||
The sphere function is a <i>n</i>-dimensional, axis-symmetric, continuously differentiable, convex function:
|
||||
<p>
|
||||
Because of its simplicity every optimization-algorithm should be able to find its global minimum at <i>x</i>=[0, 0, ... , 0]
|
||||
<p>
|
||||
|
||||
<img src="images/f1.jpg" width="480" height="360" border="2" align="middle">
|
||||
|
||||
<hr>
|
||||
More information about the sphere function can be found at:
|
||||
<p>
|
||||
|
||||
Kenneth De Jong. <i>An analysis of the behaviour of a class of genetic adaptive systems.</i> Dissertation, University of Michigan, 1975. Diss. Abstr. Int. 36(10), 5140B, University Microflims No. 76-9381.
|
||||
|
||||
</body>
|
||||
</html>
|
36
resources/F2Problem.html
Normal file
@@ -0,0 +1,36 @@
|
||||
<html>
|
||||
<head>
|
||||
<title>Generalized Rosenbrock's function</title>
|
||||
</head>
|
||||
<body><EFBFBD>
|
||||
<h1 align="center">Generalized Rosenbrock's function</h1>
|
||||
<center>
|
||||
<img src="images/rosenbrocktex.jpg" width="500" height="78">
|
||||
</center>
|
||||
<p>
|
||||
This function i unimodal and continuous, but the global optimum is hard to find, because of independence through the term (<i>x</i>_(<i>i</i>+1) - <i>x_i</i>*<i>x_i</i>)^2 between contiguous parameters.
|
||||
<p>
|
||||
<img src="images/f85.jpg" border="2">
|
||||
<br>
|
||||
Rosenbrock's function within the co-domain -5 <= <i>x</i> <= 5.
|
||||
<p>
|
||||
The global optimum is located in a prabolic formed valley (among the curve x^2 = x_1^2), which has a flatten ground.
|
||||
<br>
|
||||
<img src="images/f81.jpg" border="2">
|
||||
<br>
|
||||
The function close to its global optimum, which is: f(<i>x</i>) = f(1, 1, ... , 1) = 0.
|
||||
<p>
|
||||
Rosenbrock' function is not symmetric, not convex and not linear.
|
||||
|
||||
<hr>
|
||||
More information about Rosenbrock's function can be found at:
|
||||
<p>
|
||||
Kenneth De Jong. <i>An analysis of the behaviour of a class of genetic adaptive systems.</i> Dissertation, University of Michigan, 1975. Diss. Abstr. Int. 36(10), 5140B, University Microflims No. 76-9381.
|
||||
<p>
|
||||
Hans Paul Schwefel. <i>Evolution and optimum seeking.</i> Sixth-Generation Computer Technology Series. John Wiley & Sons, INC., 1995.
|
||||
<p>
|
||||
Darrell Whitley, Soraya Rana, John Dzubera, Keith E. Mathias. <i>Evaluating Evolutionary Algorithms. Artificial Intelligence</i>, 85(1-2):245-276. 1996.
|
||||
<p>
|
||||
Eberhard Schoeneburg, Frank Heinzmann, Sven Feddersen. <i>Genetische Algorithmen und Evolutionstrategien - Eine Einfuehrung in Theorie und Praxis der simulierten Evolution.</i> Addison-Wesley, 1994.
|
||||
</body>
|
||||
</html>
|
29
resources/F3Problem.html
Normal file
@@ -0,0 +1,29 @@
|
||||
<html>
|
||||
<head>
|
||||
<title>The step function</title>
|
||||
</head>
|
||||
<body><EFBFBD>
|
||||
<h1 align="center">The step function</h1>
|
||||
<center>
|
||||
<img src="images/steptex.jpg" width="350" height="120" aling="center">
|
||||
</center>
|
||||
<p>
|
||||
The idea of this function is the implementation of a flat plateau (slope 0)in an underlying continuous function.Its harder for optimization algortihms to find optimums because minor changes of the object variables don't affect the fitness. Therefore no conclusions about the search direction can be made.
|
||||
<p>
|
||||
<img src="images/step5.jpg" width="480" height="360" border="2" align="center">
|
||||
<p>
|
||||
The step function is symmetric considering the underlying function (here: f(x,y) = f(y,x)), but between the bulk constant plateau-areas not continuously differentiable.
|
||||
<p>
|
||||
Its minimum-area is located in the intervalls: <i>f(x)</i>=<i>f</i>([-5.12,-5), ... , [-5.12,-5))=0.
|
||||
<p>
|
||||
<img src="images/stepopt.jpg" width="480" height="360" border="2" align="center">
|
||||
<hr>
|
||||
More information about the step function can be found at:
|
||||
<p>
|
||||
Thomas Baeck, <i>Evolutionary Algorithms in Theory and Practice.</i> Oxford University Press, 1996.
|
||||
<p>
|
||||
Darrell Whitley, Soraya Rana, John Dzubera, Keith E. Mathias. <i>Evaluating Evolutionary Algorithms. Artificial Intelligence</i>, 85(1-2):245-276. 1996.
|
||||
<p>
|
||||
Eberhard Schoeneburg, Frank Heinzmann, Sven Feddersen. <i>Genetische Algorithmen und Evolutionstrategien - Eine Einfuehrung in Theorie und Praxis der simulierten Evolution.</i> Addison-Wesley, 1994.
|
||||
</body>
|
||||
</html>
|
27
resources/F5Problem.html
Normal file
@@ -0,0 +1,27 @@
|
||||
<html>
|
||||
<head>
|
||||
<title>Schwefel's double sum</title>
|
||||
</head>
|
||||
<body><EFBFBD>
|
||||
<h1 align="center">Schwefels double sum</h1>
|
||||
<center>
|
||||
<img src="images/f2tex.jpg" width="220" height="102" border="0" align="center">
|
||||
</center>
|
||||
<p>
|
||||
Schwefel's double sum is a quadratic minimization problem which difficulty increases by the dimension <i>n</i> in <i>O(n<>)</i>. It is used for analysis of correlating mutations.
|
||||
<p>
|
||||
It possesses specific symmetrical properties:<br>
|
||||
|
||||
<img src="images/schwefelsymmetrie.jpg" width="500" height="104" border="0" align="middle">
|
||||
<p>
|
||||
Its minimum is located at: <i>f(x)</i>=<i>f</i>([0, 0, ... , 0])=0
|
||||
<p>
|
||||
<img src="images/f2.jpg" width="480" height="360" border="2" align="middle">
|
||||
|
||||
<hr>
|
||||
More information about Schwefel's double sum can be found at:
|
||||
<p>
|
||||
Hans Paul Schwefel. <i>Evolution and optimum seeking.</i> Sixth-Generation Computer Technology Series. John Wiley & Sons, INC., 1995.
|
||||
|
||||
</body>
|
||||
</html>
|
42
resources/F6Problem.html
Normal file
@@ -0,0 +1,42 @@
|
||||
<html>
|
||||
<head>
|
||||
<title>Generalized Rastrigin's function</title>
|
||||
</head>
|
||||
<body><EFBFBD>
|
||||
<h1 align="center">Generalized Rastrigin's function</h1>
|
||||
<center>
|
||||
<img src="images/rastrigintex.jpg" width="500" height="101">
|
||||
</center>
|
||||
<p>
|
||||
Rastrigin's function is symmetric. It is based on the simple <i>sphere function</i> (called f_1 in the JavaEva<76> context), but it is multimodal because a modulation term on the basis of the cosine function is added. This evokes hills and valleys which are misleading local optimums.
|
||||
<p>
|
||||
Values are used for the following illustrations: <i>A</i>=10, <i>ω</i>=2*π, <i>n</i>=2.
|
||||
|
||||
<br>
|
||||
<img src="images/rastrigin20.jpg" border="2">
|
||||
|
||||
<br>
|
||||
|
||||
Rastrigin's function within the co-domain -20>=<i>x</i>>=20
|
||||
|
||||
<p>
|
||||
<img src="images/rastrigin5.jpg" border="2">
|
||||
<br>
|
||||
|
||||
Rastrigin's function within the co-domain -5>=<i>x</i>>=5
|
||||
|
||||
<p>
|
||||
|
||||
Like Ackley's function a simple evolutionary algorithm would get stuck in a local optimum, while a broader searching algorithm would get out of the local optimum closer to the global optimum, which in this case is: f(<i>x</i>) = f(0, 0, ... , 0) = 0.
|
||||
<p>
|
||||
<img src="images/rastrigin1.jpg" border="2"><br>
|
||||
Rastrigin's function close to its optimum.
|
||||
|
||||
<hr>
|
||||
More information about Rastrigin's function can be found at:
|
||||
<p>
|
||||
Darrell Whitley, Soraya Rana, John Dzubera, Keith E. Mathias. <i>Evaluating Evolutionary Algorithms. Artificial Intelligence</i>, 85(1-2):245-276. 1996.
|
||||
<p>
|
||||
Eberhard Schoeneburg, Frank Heinzmann, Sven Feddersen. <i>Genetische Algorithmen und Evolutionstrategien - Eine Einfuehrung in Theorie und Praxis der simulierten Evolution.</i> Addison-Wesley, 1994.
|
||||
</body>
|
||||
</html>
|
34
resources/F8Problem.html
Normal file
@@ -0,0 +1,34 @@
|
||||
<html>
|
||||
<head>
|
||||
<title>Ackley's function</title>
|
||||
</head>
|
||||
<body><EFBFBD>
|
||||
<h1 align="center">Ackley's function</h1>
|
||||
<center>
|
||||
<img src="images/ackleytex.jpg" width="500" height="58" aling="center">
|
||||
</center>
|
||||
<p>
|
||||
Ackley's function is intense multimodal and symmetrical. It refers to an exponential function which is modulated through a cosine function. The outside region is almost planar by the growing influence of the exponential function. In the center it possesses a hole by the influence of the cosine function.<br>
|
||||
Its minimum is at: <i>f(x)</i>=<i>f</i>([0, 0, ... , 0])=0.
|
||||
<p>
|
||||
The difficulty for an optmization algorithm is mid-graded because a simple optimization-algorithm like <i>hill-climbing</i> would get stuck in a local minimum. The optimization algorithm has to search a broader environ to overcome the local minimum and get closer to the global optima.
|
||||
|
||||
<p>
|
||||
|
||||
<img src="images/ackley.jpg" width="480" height="360" border="2" align="center">
|
||||
<br>
|
||||
Ackley's function within the co-domain -20 >= <i>x</i> >= 20, <i>a</i>=20, <i>b</i>=0.2, <i>c</i>=2*π, <i>n</i>=2.
|
||||
<p>
|
||||
|
||||
<img src="images/ackleyopt.jpg" width="480" height="360" border="2" align="center">
|
||||
<br>
|
||||
Ackley's function close to the optimum.
|
||||
<hr>
|
||||
More information about Ackley's function can be found at:
|
||||
<p>
|
||||
David. H. Ackley. <i>A connection machine for genetic hillclimbing.</i> Kluwer Academic Publishers, Boston, 1987.
|
||||
<p>
|
||||
Thomas Baeck. <i>Evolutionary Algorithms in Theory and Practice.</i> Oxford University Press, 1996.
|
||||
|
||||
</body>
|
||||
</html>
|
17
resources/GO.html
Normal file
@@ -0,0 +1,17 @@
|
||||
<html>
|
||||
<head>
|
||||
<title>JavaEvA Genetic Optimization</title>
|
||||
</head>
|
||||
<body>
|
||||
<h1 align="center">The JavaEvA Genetic Optimization Module</h1>
|
||||
<br>
|
||||
The Genetic Optimization module allows the application of a variety of
|
||||
nature-inspired heuristics within one framework. You can combine several
|
||||
datatypes as representations with specific evolutionary operators and
|
||||
widely independently choose an optimization strategy. Some strategies,
|
||||
however, only work with certain datatypes. Most remarkably, DE and PSO
|
||||
require a real-valued representations for the moment, whereas GA, for example,
|
||||
is typically run with a binary datatype but also works on real valued individuals
|
||||
by just accessing the analoguous evolutionary operators.
|
||||
</body>
|
||||
</html>
|
25
resources/GOParameters.html
Normal file
@@ -0,0 +1,25 @@
|
||||
<html>
|
||||
<head>
|
||||
<title>JavaEvA Genetic Optimization</title>
|
||||
</head>
|
||||
<body>
|
||||
<h1 align="center">Genetic Optimization Parameters</h1>
|
||||
<br>
|
||||
The GO parameter class is used to change main GO optimization settings. You may:
|
||||
<ul>
|
||||
<li>Choose the optimizer. Check the optimizer object for further parameters and information.</li>
|
||||
<li>Choose an output file name. If "none" is used, no output file will be written.</li>
|
||||
<li>Select the problem to be optimized. Check the problem instance for further parameters and information. </li>
|
||||
<li>Set a random seed. For the same seed, an optimization run should yield the same results. Set the seed to zero to use a dynamic seed for each run (using system time).</li>
|
||||
<li>Define the termination criterion. Usually a maximum number of fitness evaluations is set, but
|
||||
it is also possible to choose a maximum number of generations, an absolute fitness value to be reached, a
|
||||
convergence criterion measured in fitness change over time, or a combination of those.</li>
|
||||
</ul>
|
||||
<b>Note:</b> <br>
|
||||
The evolutionary operators used by a strategy are tightly connected to the representation used.
|
||||
On the other hand, the representation is usually defined by the underlying problem, therefore,
|
||||
to change the operators effecting the individuals, select the problem and set them within the
|
||||
Individual class presented there. Also note, that not all optimizers can handle all types
|
||||
of representations.
|
||||
</body>
|
||||
</html>
|
13
resources/GaussProcess.html
Normal file
@@ -0,0 +1,13 @@
|
||||
<html>
|
||||
<head>
|
||||
<title>Gauss Process Regression Model</title>
|
||||
</head>
|
||||
<body>
|
||||
<EFBFBD>
|
||||
<h1 align="center">Gauss Process Regression Model</h1>
|
||||
<center>
|
||||
</center><br>
|
||||
Please read the JavaEvA manual for a detailed description.
|
||||
</ul>
|
||||
</body>
|
||||
</html>
|
19
resources/JavaEvA.props
Normal file
@@ -0,0 +1,19 @@
|
||||
# Select a default module. Set empty or comment out to select from all available modules.
|
||||
#
|
||||
# possible values are the names of module objects as returned by their getName method (!).
|
||||
# DefaultModule = Evolution_Strategy
|
||||
DefaultModule = Genetic_Optimization
|
||||
|
||||
## Uncomment this to show all loadable modules. Most are redundant, though.
|
||||
ShowModules
|
||||
|
||||
ServerList = localhost,134.2.172.14,ranode22
|
||||
|
||||
# base class for modules. Do not alter!
|
||||
ModulePackage = javaeva.server.modules
|
||||
|
||||
# filter class for modules. Do not alter!
|
||||
ModuleFilterClass = javaeva.server.modules.AbstractModuleAdapter
|
||||
|
||||
###################### The GO part ######################################
|
||||
# there are no further props necessary
|
28
resources/MAES.html
Normal file
@@ -0,0 +1,28 @@
|
||||
<html>
|
||||
<head>
|
||||
<title>Model Assisted Evolution Strategy - MAES</title>
|
||||
</head>
|
||||
<body>
|
||||
<EFBFBD>
|
||||
<h1 align="center">Model Assisted Evolution Strategy - MAES</h1>
|
||||
<center>
|
||||
</center><br>
|
||||
In the pre-selection concept lambdaPlus>lambda
|
||||
individuals are generated from mu parents.
|
||||
All lambdaPlus individuals are evaluated by a
|
||||
surrogate model of the fitness landscape and the estimated
|
||||
fitness values are used to pre-select the lambda
|
||||
best individuals, which will be evaluated with
|
||||
the real fitness function.
|
||||
The model is trained at the beginning with a randomly created
|
||||
initial population and is updated after each generation
|
||||
step with lambda new fitness cases.
|
||||
The idea behind this approach is that only the
|
||||
most promising individuals with a good fitness prediction
|
||||
are evaluated with the true fitness function.
|
||||
|
||||
Every generation a new offspring lambda is evaluated with the real fitness function,
|
||||
the model is updated with this information of \lambda fitness cases.
|
||||
|
||||
</body>
|
||||
</html>
|
16
resources/MAESIndividual.html
Normal file
@@ -0,0 +1,16 @@
|
||||
<html>
|
||||
<head>
|
||||
<title>MAESIndividual</title>
|
||||
</head>
|
||||
<body>
|
||||
<EFBFBD>
|
||||
<h1 align="center">MAESIndividual</h1>
|
||||
<center>
|
||||
</center><br>
|
||||
This element represents the properties of an individual.
|
||||
The most important evolutionary operator of an ES is
|
||||
the mutation of the objective variables representing
|
||||
the solution of the problem, which is responsible
|
||||
for the self-adaptation capability of the ES
|
||||
</body>
|
||||
</html>
|
17
resources/MAESPara.html
Normal file
@@ -0,0 +1,17 @@
|
||||
<html>
|
||||
<head>
|
||||
<title>MAESPara</title>
|
||||
</head>
|
||||
<body><EFBFBD>
|
||||
<h1 align="center">MAESPara</h1>
|
||||
<center>
|
||||
</center><br>
|
||||
MAESPara contains the information describing an Evolution Strategy (ES):
|
||||
<ul>
|
||||
<li>The problem to be solved.</li>
|
||||
<li>A seed value for the random number generator.</li>
|
||||
<li>A termination criterion for the algorithm.</li>
|
||||
<li>The MAES population.</li>
|
||||
</ul>
|
||||
</body>
|
||||
</html>
|
23
resources/MAESPopulation.html
Normal file
@@ -0,0 +1,23 @@
|
||||
<html>
|
||||
<head>
|
||||
<title>MAESPopulation</title>
|
||||
</head>
|
||||
<body><EFBFBD>
|
||||
<h1 align="center">Model Assisted Population</h1>
|
||||
<center>
|
||||
</center><br>
|
||||
The MAESPopulation panel contains the information describing the Model Assisted Evolution Strategy (MAES):
|
||||
<ul>
|
||||
<li>A prototype of an individual (contains mutation operator).</li>
|
||||
<li>The size of the model pre-selected individuals: lambdaPlus>=lambda.
|
||||
For lambdaPlus=lambda you have no model impact.</li>
|
||||
<li>The regression model for fitness prediction.</li>
|
||||
<li>The model size is given by the number of last evaluated individuals,
|
||||
which are used to train the model.</li>
|
||||
<li>The population size of the parents: lambda.</li>
|
||||
<li>The population size of the children: mu.</li>
|
||||
<li>A recombination operator.</li>
|
||||
<li>A fitness based selection operator.</li>
|
||||
</ul>
|
||||
</body>
|
||||
</html>
|
18
resources/MAESRecombination.html
Normal file
@@ -0,0 +1,18 @@
|
||||
<html>
|
||||
<head>
|
||||
<title>MAESRecombination</title>
|
||||
</head>
|
||||
<body>
|
||||
<EFBFBD>
|
||||
<h1 align="center">MAESRecombination</h1>
|
||||
<center>
|
||||
</center><br>
|
||||
The recombination operator has the following editable properties:
|
||||
<ul>
|
||||
<li>strategy for recombination of the strategy parameters of the mutation operators..</li>
|
||||
<li>strategy for recombination of the objectives of an individual..</li>
|
||||
<li>rho = number of parents, which recombinate to one offspring individual..</li>
|
||||
<li>strategy for selecting the input individuals for one recombination.</li>
|
||||
</ul>
|
||||
</body>
|
||||
</html>
|
12
resources/MAESSelectionStrategyComma.html
Normal file
@@ -0,0 +1,12 @@
|
||||
<html>
|
||||
<head>
|
||||
<title>MAES Comma Selection</title>
|
||||
</head>
|
||||
<body>
|
||||
<EFBFBD>
|
||||
<h1 align="center">MAES Comma Selection Operator</h1>
|
||||
<center>
|
||||
</center><br>
|
||||
The best mu individuals are selected from lambda offspring individuals.
|
||||
</body>
|
||||
</html>
|
32
resources/MAESSelectionStrategyMedian.html
Normal file
@@ -0,0 +1,32 @@
|
||||
<html>
|
||||
<head>
|
||||
<title>MAES - Median Selection </title>
|
||||
</head>
|
||||
<body>
|
||||
<EFBFBD>
|
||||
<h1 align="center">MAES Median Selection Strategy</h1>
|
||||
<center>
|
||||
</center><br>
|
||||
The main application field of the Median Selection Strategy
|
||||
operator are steady state algorithms.
|
||||
A standard steady-state ES is equivalent to a (mu + 1) ES.
|
||||
Only one individual is generated and evaluated
|
||||
at each step and gets immediately integrated into the population.
|
||||
Compared to generation based algorithms the information of
|
||||
new evaluated individuals can be integrated directly into the optimization process.
|
||||
The idea is to approximate the selection mechanism
|
||||
of a standard (mu,lambda) ES, by
|
||||
using a fitness buffer containing
|
||||
fitness values of the last n evaluations.
|
||||
Given a relative rate of acceptance r=mu\lambda.
|
||||
A newly evaluated individual substitutes the worst individual
|
||||
of the population, if it has a better fitness than the r*n best individuals
|
||||
in the buffer.
|
||||
<ul>
|
||||
<li>The problem to be solved.</li>
|
||||
<li>A seed value for the random number genarator.</li>
|
||||
<li>A termination criterium for the algorithm.</li>
|
||||
<li>The used population.</li>
|
||||
</ul>
|
||||
</body>
|
||||
</html>
|
13
resources/MAESSelectionStrategyPlus.html
Normal file
@@ -0,0 +1,13 @@
|
||||
<html>
|
||||
<head>
|
||||
<title>Plus Selection Strategy</title>
|
||||
</head>
|
||||
<body>
|
||||
<EFBFBD>
|
||||
<h1 align="center">MAES Plus Selection Operator</h1>
|
||||
<center>
|
||||
</center><br>
|
||||
The best mu individuals are selected from the
|
||||
aggredation of the lambda offspring individuals and the mu parents.
|
||||
</body>
|
||||
</html>
|
BIN
resources/MOCCO/MOCCO_GDF.gif
Normal file
After Width: | Height: | Size: 1.6 KiB |
BIN
resources/MOCCO/MOCCO_MOEA.gif
Normal file
After Width: | Height: | Size: 1.5 KiB |
BIN
resources/MOCCO/MOCCO_REFP.gif
Normal file
After Width: | Height: | Size: 1.7 KiB |
BIN
resources/MOCCO/MOCCO_STEP.gif
Normal file
After Width: | Height: | Size: 1.6 KiB |
BIN
resources/MOCCO/MOCCO_TBCH.gif
Normal file
After Width: | Height: | Size: 2.0 KiB |
252
resources/MOPReference/T1_250.txt
Normal file
@@ -0,0 +1,252 @@
|
||||
x1 x2
|
||||
0.0 1.0
|
||||
0.0040 0.9367544467966324
|
||||
0.0080 0.9105572809000084
|
||||
0.012 0.8904554884989668
|
||||
0.016 0.8735088935932649
|
||||
0.02 0.8585786437626906
|
||||
0.024 0.8450806661517033
|
||||
0.028 0.8326679946931849
|
||||
0.032 0.8211145618000169
|
||||
0.036000000000000004 0.8102633403898972
|
||||
0.04 0.8
|
||||
0.044 0.7902382303659696
|
||||
0.048 0.7809109769979335
|
||||
0.052000000000000005 0.7719649149801724
|
||||
0.056 0.7633568086760154
|
||||
0.06 0.7550510257216823
|
||||
0.064 0.7470177871865297
|
||||
0.068 0.739231903791894
|
||||
0.07200000000000001 0.7316718427000253
|
||||
0.076 0.7243190249581956
|
||||
0.08 0.717157287525381
|
||||
0.084 0.7101724650762112
|
||||
0.088 0.7033520605161735
|
||||
0.092 0.696684982237938
|
||||
0.096 0.6901613323034066
|
||||
0.1 0.683772233983162
|
||||
0.10400000000000001 0.677509690068058
|
||||
0.108 0.6713664654969003
|
||||
0.112 0.6653359893863697
|
||||
0.116 0.659412272681472
|
||||
0.12 0.6535898384862245
|
||||
0.124 0.6478636627668198
|
||||
0.128 0.6422291236000337
|
||||
0.132 0.6366819575083009
|
||||
0.136 0.6312182217082845
|
||||
0.14 0.6258342613226058
|
||||
0.14400000000000002 0.6205266807797944
|
||||
0.148 0.6152923187665731
|
||||
0.152 0.6101282262076415
|
||||
0.156 0.60503164683737
|
||||
0.16 0.6
|
||||
0.164 0.5950308653736682
|
||||
0.168 0.590121969361616
|
||||
0.17200000000000001 0.5852711729334455
|
||||
0.176 0.5804764607319394
|
||||
0.18 0.5757359312880714
|
||||
0.184 0.5710477882094557
|
||||
0.188 0.566410332226424
|
||||
0.192 0.5618219539958671
|
||||
0.196 0.5572811275764269
|
||||
0.2 0.5527864045000421
|
||||
0.20400000000000001 0.5483364083745514
|
||||
0.20800000000000002 0.5439298299603448
|
||||
0.212 0.5395654226711465
|
||||
0.216 0.53524199845511
|
||||
0.22 0.530958424017657
|
||||
0.224 0.5267136173520307
|
||||
0.228 0.522506544547467
|
||||
0.232 0.5183362168483081
|
||||
0.23600000000000002 0.5142016879403553
|
||||
0.24 0.5101020514433644
|
||||
0.244 0.5060364385908612
|
||||
0.248 0.5020040160804506
|
||||
0.252 0.4980039840795547
|
||||
0.256 0.49403557437305934
|
||||
0.26 0.4900980486407215
|
||||
0.264 0.4861906968533948
|
||||
0.268 0.4823128357782086
|
||||
0.272 0.47846380758378804
|
||||
0.276 0.4746429785374521
|
||||
0.28 0.47084973778708183
|
||||
0.28400000000000003 0.46708349622103085
|
||||
0.28800000000000003 0.46334368540005044
|
||||
0.292 0.4596297565557482
|
||||
0.296 0.45594117965058223
|
||||
0.3 0.4522774424948339
|
||||
0.304 0.4486380499163911
|
||||
0.308 0.4450225229795357
|
||||
0.312 0.44143039824924235
|
||||
0.316 0.4378612270977922
|
||||
0.32 0.434314575050762
|
||||
0.324 0.4307900211696917
|
||||
0.328 0.42728715746894586
|
||||
0.332 0.4238055883644827
|
||||
0.336 0.42034493015242247
|
||||
0.34 0.4169048105154699
|
||||
0.34400000000000003 0.41348486805539275
|
||||
0.34800000000000003 0.4100847518498949
|
||||
0.352 0.406704121032347
|
||||
0.356 0.4033426443929481
|
||||
0.36 0.4
|
||||
0.364 0.3966758748400657
|
||||
0.368 0.3933699644758759
|
||||
0.372 0.3900819727209237
|
||||
0.376 0.3868116113297644
|
||||
0.38 0.38355859970310235
|
||||
0.384 0.3803226646068133
|
||||
0.388 0.3771035399041025
|
||||
0.392 0.37390096630005887
|
||||
0.396 0.3707146910979091
|
||||
0.4 0.3675444679663241
|
||||
0.404 0.36439005671717184
|
||||
0.40800000000000003 0.3612512230931475
|
||||
0.41200000000000003 0.35812773856475144
|
||||
0.41600000000000004 0.355019380136116
|
||||
0.42 0.35192593015921403
|
||||
0.424 0.3488471761560118
|
||||
0.428 0.3457829106481549
|
||||
0.432 0.34273293099380064
|
||||
0.436 0.33969703923123284
|
||||
0.44 0.33667504192892006
|
||||
0.444 0.3336667500416928
|
||||
0.448 0.33067197877273957
|
||||
0.452 0.32769054744113557
|
||||
0.456 0.3247222793546347
|
||||
0.46 0.3217670016874732
|
||||
0.464 0.3188245453629439
|
||||
0.468 0.31589474494051717
|
||||
0.47200000000000003 0.3129774385072932
|
||||
0.47600000000000003 0.3100724675735864
|
||||
0.48 0.3071796769724491
|
||||
0.484 0.30429891476295656
|
||||
0.488 0.30143003213708075
|
||||
0.492 0.29857288332999277
|
||||
0.496 0.2957273255336397
|
||||
0.5 0.2928932188134524
|
||||
0.504 0.2900704260280461
|
||||
0.508 0.28725881275178156
|
||||
0.512 0.2844582472000673
|
||||
0.516 0.2816686001572811
|
||||
0.52 0.2788897449072021
|
||||
0.524 0.27612155716584563
|
||||
0.528 0.27336391501660195
|
||||
0.532 0.2706166988475812
|
||||
0.536 0.26787979129107486
|
||||
0.54 0.26515307716504655
|
||||
0.544 0.262436443416569
|
||||
0.548 0.25972977906713013
|
||||
0.552 0.25703297515973156
|
||||
0.556 0.25434592470771
|
||||
0.56 0.25166852264521167
|
||||
0.5640000000000001 0.2490006657792565
|
||||
0.5680000000000001 0.2463422527433291
|
||||
0.5720000000000001 0.24369318395243844
|
||||
0.5760000000000001 0.2410533615595889
|
||||
0.58 0.23842268941360922
|
||||
0.584 0.235801073018288
|
||||
0.588 0.23318841949276747
|
||||
0.592 0.23058463753314618
|
||||
0.596 0.2279896373752487
|
||||
0.6 0.2254033307585166
|
||||
0.604 0.22282563089098206
|
||||
0.608 0.2202564524152829
|
||||
0.612 0.2176957113756821
|
||||
0.616 0.2151433251860566
|
||||
0.62 0.21259921259881887
|
||||
0.624 0.21006329367474008
|
||||
0.628 0.207535489753642
|
||||
0.632 0.20501572342592833
|
||||
0.636 0.20250391850492455
|
||||
0.64 0.19999999999999996
|
||||
0.644 0.19750389409044478
|
||||
0.648 0.19501552810007572
|
||||
0.652 0.19253483047254605
|
||||
0.656 0.19006173074733645
|
||||
0.66 0.18759615953640396
|
||||
0.664 0.18513804850146542
|
||||
0.668 0.182687330331898
|
||||
0.672 0.18024393872323208
|
||||
0.676 0.17780780835622134
|
||||
0.68 0.17537887487646786
|
||||
0.684 0.17295707487458667
|
||||
0.6880000000000001 0.1705423458668911
|
||||
0.6920000000000001 0.16813462627658315
|
||||
0.6960000000000001 0.1657338554154315
|
||||
0.7000000000000001 0.16333997346592444
|
||||
0.704 0.16095292146387874
|
||||
0.708 0.15857264128149484
|
||||
0.712 0.15619907561084057
|
||||
0.716 0.15383216794775278
|
||||
0.72 0.15147186257614298
|
||||
0.724 0.14911810455269414
|
||||
0.728 0.14677083969193838
|
||||
0.732 0.14443001455170246
|
||||
0.736 0.14209557641891135
|
||||
0.74 0.13976747329573735
|
||||
0.744 0.13744565388608698
|
||||
0.748 0.13513006758241386
|
||||
0.752 0.13282066445284801
|
||||
0.756 0.1305173952286337
|
||||
0.76 0.12822021129186534
|
||||
0.764 0.12592906466351372
|
||||
0.768 0.12364390799173419
|
||||
0.772 0.12136469454044818
|
||||
0.776 0.11909137817819038
|
||||
0.78 0.11682391336721532
|
||||
0.784 0.11456225515285379
|
||||
0.788 0.11230635915311415
|
||||
0.792 0.11005618154852037
|
||||
0.796 0.10781167907218148
|
||||
0.8 0.10557280900008414
|
||||
0.804 0.10333952914160416
|
||||
0.808 0.10111179783023072
|
||||
0.812 0.09888957391449515
|
||||
0.8160000000000001 0.09667281674910277
|
||||
0.8200000000000001 0.09446148618625827
|
||||
0.8240000000000001 0.0922555425671826
|
||||
0.8280000000000001 0.09005494671381387
|
||||
0.8320000000000001 0.08785965992068956
|
||||
0.836 0.08566964394700316
|
||||
0.84 0.08348486100883201
|
||||
0.844 0.08130527377153185
|
||||
0.848 0.07913084534229298
|
||||
0.852 0.07696153926285387
|
||||
0.856 0.07479731950236979
|
||||
0.86 0.07263815045042965
|
||||
0.864 0.07048399691022
|
||||
0.868 0.06833482409183078
|
||||
0.872 0.06619059760569979
|
||||
0.876 0.06405128345619282
|
||||
0.88 0.061916848035314054
|
||||
0.884 0.05978725811654728
|
||||
0.888 0.05766248084882031
|
||||
0.892 0.05554248375059245
|
||||
0.896 0.05342723470406141
|
||||
0.9 0.05131670194948623
|
||||
0.904 0.049210854079623
|
||||
0.908 0.047109660034272305
|
||||
0.912 0.04501308909493418
|
||||
0.916 0.04292111087956807
|
||||
0.92 0.040833695337456066
|
||||
0.924 0.038750812744166696
|
||||
0.928 0.036672433696616324
|
||||
0.932 0.03459852910822636
|
||||
0.936 0.03252907020417406
|
||||
0.9400000000000001 0.030464028516734132
|
||||
0.9440000000000001 0.028403375880710402
|
||||
0.9480000000000001 0.02634708442895317
|
||||
0.9520000000000001 0.024295126587962512
|
||||
0.9560000000000001 0.022247475073574607
|
||||
0.96 0.020204102886728803
|
||||
0.964 0.01816498330931382
|
||||
0.968 0.01613008990009257
|
||||
0.972 0.014099396490701022
|
||||
0.976 0.012072877181722452
|
||||
0.98 0.01005050633883342
|
||||
0.984 0.008032258589020458
|
||||
0.988 0.006018108816865819
|
||||
0.992 0.004008032160901398
|
||||
0.996 0.0020020040100280356
|
||||
1.0 0.0
|
502
resources/MOPReference/T1_500.txt
Normal file
@@ -0,0 +1,502 @@
|
||||
x1 x2
|
||||
0.0 1.0
|
||||
0.0020 0.9552786404500042
|
||||
0.0040 0.9367544467966324
|
||||
0.0060 0.9225403330758517
|
||||
0.0080 0.9105572809000084
|
||||
0.01 0.9
|
||||
0.012 0.8904554884989668
|
||||
0.014 0.8816784043380077
|
||||
0.016 0.8735088935932649
|
||||
0.018000000000000002 0.8658359213500126
|
||||
0.02 0.8585786437626906
|
||||
0.022 0.8516760302580868
|
||||
0.024 0.8450806661517033
|
||||
0.026000000000000002 0.838754845034029
|
||||
0.028 0.8326679946931849
|
||||
0.03 0.8267949192431123
|
||||
0.032 0.8211145618000169
|
||||
0.034 0.8156091108541422
|
||||
0.036000000000000004 0.8102633403898972
|
||||
0.038 0.8050641131038208
|
||||
0.04 0.8
|
||||
0.042 0.795060984680808
|
||||
0.044 0.7902382303659696
|
||||
0.046 0.7855238941047278
|
||||
0.048 0.7809109769979335
|
||||
0.05 0.7763932022500211
|
||||
0.052000000000000005 0.7719649149801724
|
||||
0.054 0.767620999227555
|
||||
0.056 0.7633568086760154
|
||||
0.058 0.759168108424154
|
||||
0.06 0.7550510257216823
|
||||
0.062 0.7510020080402253
|
||||
0.064 0.7470177871865297
|
||||
0.066 0.7430953484266973
|
||||
0.068 0.739231903791894
|
||||
0.07 0.735424868893541
|
||||
0.07200000000000001 0.7316718427000253
|
||||
0.074 0.7279705898252911
|
||||
0.076 0.7243190249581956
|
||||
0.078 0.7207151991246212
|
||||
0.08 0.717157287525381
|
||||
0.082 0.7136435787344729
|
||||
0.084 0.7101724650762112
|
||||
0.08600000000000001 0.7067424340276964
|
||||
0.088 0.7033520605161735
|
||||
0.09 0.7
|
||||
0.092 0.696684982237938
|
||||
0.094 0.6934058056648822
|
||||
0.096 0.6901613323034066
|
||||
0.098 0.6869504831500295
|
||||
0.1 0.683772233983162
|
||||
0.10200000000000001 0.6806256115465737
|
||||
0.10400000000000001 0.677509690068058
|
||||
0.106 0.6744235880780058
|
||||
0.108 0.6713664654969003
|
||||
0.11 0.66833752096446
|
||||
0.112 0.6653359893863697
|
||||
0.114 0.6623611396773174
|
||||
0.116 0.659412272681472
|
||||
0.11800000000000001 0.6564887192536466
|
||||
0.12 0.6535898384862245
|
||||
0.122 0.6507150160685404
|
||||
0.124 0.6478636627668198
|
||||
0.126 0.6450352130140231
|
||||
0.128 0.6422291236000337
|
||||
0.13 0.639444872453601
|
||||
0.132 0.6366819575083009
|
||||
0.134 0.6339398956455374
|
||||
0.136 0.6312182217082845
|
||||
0.138 0.6285164875798658
|
||||
0.14 0.6258342613226058
|
||||
0.14200000000000002 0.6231711263716646
|
||||
0.14400000000000002 0.6205266807797944
|
||||
0.146 0.617900536509144
|
||||
0.148 0.6152923187665731
|
||||
0.15 0.6127016653792583
|
||||
0.152 0.6101282262076415
|
||||
0.154 0.6075716625930283
|
||||
0.156 0.60503164683737
|
||||
0.158 0.6025078617129642
|
||||
0.16 0.6
|
||||
0.162 0.5975077640500379
|
||||
0.164 0.5950308653736682
|
||||
0.166 0.5925690242507327
|
||||
0.168 0.590121969361616
|
||||
0.17 0.587689437438234
|
||||
0.17200000000000001 0.5852711729334455
|
||||
0.17400000000000002 0.5828669277077158
|
||||
0.176 0.5804764607319394
|
||||
0.178 0.5780995378054203
|
||||
0.18 0.5757359312880714
|
||||
0.182 0.5733854198459691
|
||||
0.184 0.5710477882094557
|
||||
0.186 0.5687228269430435
|
||||
0.188 0.566410332226424
|
||||
0.19 0.5641101056459327
|
||||
0.192 0.5618219539958671
|
||||
0.194 0.5595456890890952
|
||||
0.196 0.5572811275764269
|
||||
0.198 0.5550280907742602
|
||||
0.2 0.5527864045000421
|
||||
0.202 0.5505558989151154
|
||||
0.20400000000000001 0.5483364083745514
|
||||
0.20600000000000002 0.5461277712835912
|
||||
0.20800000000000002 0.5439298299603448
|
||||
0.21 0.5417424305044161
|
||||
0.212 0.5395654226711465
|
||||
0.214 0.5373986597511848
|
||||
0.216 0.53524199845511
|
||||
0.218 0.5330952988028499
|
||||
0.22 0.530958424017657
|
||||
0.222 0.5288312404244102
|
||||
0.224 0.5267136173520307
|
||||
0.226 0.5246054270398115
|
||||
0.228 0.522506544547467
|
||||
0.23 0.5204168476687281
|
||||
0.232 0.5183362168483081
|
||||
0.234 0.516264535102087
|
||||
0.23600000000000002 0.5142016879403553
|
||||
0.23800000000000002 0.5121475632939813
|
||||
0.24 0.5101020514433644
|
||||
0.242 0.5080650449500463
|
||||
0.244 0.5060364385908612
|
||||
0.246 0.5040161292945102
|
||||
0.248 0.5020040160804506
|
||||
0.25 0.5
|
||||
0.252 0.4980039840795547
|
||||
0.254 0.49601587326583385
|
||||
0.256 0.49403557437305934
|
||||
0.258 0.4920629960319882
|
||||
0.26 0.4900980486407215
|
||||
0.262 0.48814064431721094
|
||||
0.264 0.4861906968533948
|
||||
0.266 0.4842481216708949
|
||||
0.268 0.4823128357782086
|
||||
0.27 0.48038475772933675
|
||||
0.272 0.47846380758378804
|
||||
0.274 0.476549906867904
|
||||
0.276 0.4746429785374521
|
||||
0.278 0.47274294694143726
|
||||
0.28 0.47084973778708183
|
||||
0.28200000000000003 0.46896327810592986
|
||||
0.28400000000000003 0.46708349622103085
|
||||
0.28600000000000003 0.4652103217151624
|
||||
0.28800000000000003 0.46334368540005044
|
||||
0.29 0.4614835192865496
|
||||
0.292 0.4596297565557482
|
||||
0.294 0.4577823315309617
|
||||
0.296 0.45594117965058223
|
||||
0.298 0.4541062374417528
|
||||
0.3 0.4522774424948339
|
||||
0.302 0.4504547334386365
|
||||
0.304 0.4486380499163911
|
||||
0.306 0.4468273325624268
|
||||
0.308 0.4450225229795357
|
||||
0.31 0.4432235637169978
|
||||
0.312 0.44143039824924235
|
||||
0.314 0.43964297095512406
|
||||
0.316 0.4378612270977922
|
||||
0.318 0.4360851128051326
|
||||
0.32 0.434314575050762
|
||||
0.322 0.4325495616355557
|
||||
0.324 0.4307900211696917
|
||||
0.326 0.4290359030551921
|
||||
0.328 0.42728715746894586
|
||||
0.33 0.42554373534619716
|
||||
0.332 0.4238055883644827
|
||||
0.334 0.42207266892800444
|
||||
0.336 0.42034493015242247
|
||||
0.338 0.41862232585005466
|
||||
0.34 0.4169048105154699
|
||||
0.342 0.41519233931146216
|
||||
0.34400000000000003 0.41348486805539275
|
||||
0.34600000000000003 0.4117823532058903
|
||||
0.34800000000000003 0.4100847518498949
|
||||
0.35000000000000003 0.4083920216900384
|
||||
0.352 0.406704121032347
|
||||
0.354 0.4050210087742594
|
||||
0.356 0.4033426443929481
|
||||
0.358 0.40166898793393635
|
||||
0.36 0.4
|
||||
0.362 0.3983356417403471
|
||||
0.364 0.3966758748400657
|
||||
0.366 0.39502066150983306
|
||||
0.368 0.3933699644758759
|
||||
0.37 0.3917237469701781
|
||||
0.372 0.3900819727209237
|
||||
0.374 0.38844460594317376
|
||||
0.376 0.3868116113297644
|
||||
0.378 0.3851829540424241
|
||||
0.38 0.38355859970310235
|
||||
0.382 0.3819385143855023
|
||||
0.384 0.3803226646068133
|
||||
0.386 0.3787110173196373
|
||||
0.388 0.3771035399041025
|
||||
0.39 0.37550020016016017
|
||||
0.392 0.37390096630005887
|
||||
0.394 0.37230580694099136
|
||||
0.396 0.3707146910979091
|
||||
0.398 0.3691275881764998
|
||||
0.4 0.3675444679663241
|
||||
0.402 0.3659653006341057
|
||||
0.404 0.36439005671717184
|
||||
0.406 0.36281870711704034
|
||||
0.40800000000000003 0.3612512230931475
|
||||
0.41000000000000003 0.3596875762567151
|
||||
0.41200000000000003 0.35812773856475144
|
||||
0.41400000000000003 0.35657168231418346
|
||||
0.41600000000000004 0.355019380136116
|
||||
0.418 0.35347080499021544
|
||||
0.42 0.35192593015921403
|
||||
0.422 0.35038472924353137
|
||||
0.424 0.3488471761560118
|
||||
0.426 0.3473132451167712
|
||||
0.428 0.3457829106481549
|
||||
0.43 0.34425614756979994
|
||||
0.432 0.34273293099380064
|
||||
0.434 0.3412132363199758
|
||||
0.436 0.33969703923123284
|
||||
0.438 0.33818431568902807
|
||||
0.44 0.33667504192892006
|
||||
0.442 0.3351691944562135
|
||||
0.444 0.3336667500416928
|
||||
0.446 0.33216768571744004
|
||||
0.448 0.33067197877273957
|
||||
0.45 0.3291796067500631
|
||||
0.452 0.32769054744113557
|
||||
0.454 0.3262047788830793
|
||||
0.456 0.3247222793546347
|
||||
0.458 0.3232430273724548
|
||||
0.46 0.3217670016874732
|
||||
0.462 0.3202941812813428
|
||||
0.464 0.3188245453629439
|
||||
0.466 0.31735807336495947
|
||||
0.468 0.31589474494051717
|
||||
0.47000000000000003 0.31443453995989556
|
||||
0.47200000000000003 0.3129774385072932
|
||||
0.47400000000000003 0.3115234208776597
|
||||
0.47600000000000003 0.3100724675735864
|
||||
0.47800000000000004 0.30862455930225574
|
||||
0.48 0.3071796769724491
|
||||
0.482 0.3057378016916087
|
||||
0.484 0.30429891476295656
|
||||
0.486 0.302862997682665
|
||||
0.488 0.30143003213708075
|
||||
0.49 0.30000000000000004
|
||||
0.492 0.29857288332999277
|
||||
0.494 0.29714866436777687
|
||||
0.496 0.2957273255336397
|
||||
0.498 0.294308849424906
|
||||
0.5 0.2928932188134524
|
||||
0.502 0.29148041664326596
|
||||
0.504 0.2900704260280461
|
||||
0.506 0.28866323024885043
|
||||
0.508 0.28725881275178156
|
||||
0.51 0.285857157145715
|
||||
0.512 0.2844582472000673
|
||||
0.514 0.28306206684260315
|
||||
0.516 0.2816686001572811
|
||||
0.518 0.2802778313821367
|
||||
0.52 0.2788897449072021
|
||||
0.522 0.27750432527246227
|
||||
0.524 0.27612155716584563
|
||||
0.526 0.27474142542125013
|
||||
0.528 0.27336391501660195
|
||||
0.53 0.2719890110719482
|
||||
0.532 0.2706166988475812
|
||||
0.534 0.2692469637421956
|
||||
0.536 0.26787979129107486
|
||||
0.538 0.26651516716431
|
||||
0.54 0.26515307716504655
|
||||
0.542 0.2637935072277615
|
||||
0.544 0.262436443416569
|
||||
0.546 0.26108187192355337
|
||||
0.548 0.25972977906713013
|
||||
0.55 0.2583801512904337
|
||||
0.552 0.25703297515973156
|
||||
0.554 0.25568823736286417
|
||||
0.556 0.25434592470771
|
||||
0.558 0.2530060241206761
|
||||
0.56 0.25166852264521167
|
||||
0.562 0.2503334074403475
|
||||
0.5640000000000001 0.2490006657792565
|
||||
0.5660000000000001 0.24767028504783883
|
||||
0.5680000000000001 0.2463422527433291
|
||||
0.5700000000000001 0.24501655647292497
|
||||
0.5720000000000001 0.24369318395243844
|
||||
0.5740000000000001 0.24237212300496747
|
||||
0.5760000000000001 0.2410533615595889
|
||||
0.578 0.2397368876500715
|
||||
0.58 0.23842268941360922
|
||||
0.582 0.23711075508957402
|
||||
0.584 0.235801073018288
|
||||
0.586 0.23449363163981451
|
||||
0.588 0.23318841949276747
|
||||
0.59 0.23188542521313915
|
||||
0.592 0.23058463753314618
|
||||
0.594 0.22928604528009233
|
||||
0.596 0.2279896373752487
|
||||
0.598 0.2266954028327518
|
||||
0.6 0.2254033307585166
|
||||
0.602 0.2241134103491671
|
||||
0.604 0.22282563089098206
|
||||
0.606 0.22153998175885747
|
||||
0.608 0.2202564524152829
|
||||
0.61 0.21897503240933458
|
||||
0.612 0.2176957113756821
|
||||
0.614 0.21641847903361067
|
||||
0.616 0.2151433251860566
|
||||
0.618 0.21387023971865815
|
||||
0.62 0.21259921259881887
|
||||
0.622 0.2113302338747859
|
||||
0.624 0.21006329367474008
|
||||
0.626 0.20879838220590075
|
||||
0.628 0.207535489753642
|
||||
0.63 0.2062746066806228
|
||||
0.632 0.20501572342592833
|
||||
0.634 0.20375883050422472
|
||||
0.636 0.20250391850492455
|
||||
0.638 0.20125097809136572
|
||||
0.64 0.19999999999999996
|
||||
0.642 0.19875097503959482
|
||||
0.644 0.19750389409044478
|
||||
0.646 0.19625874810359523
|
||||
0.648 0.19501552810007572
|
||||
0.65 0.19377422517014498
|
||||
0.652 0.19253483047254605
|
||||
0.654 0.1912973352337708
|
||||
0.656 0.19006173074733645
|
||||
0.658 0.18882800837307012
|
||||
0.66 0.18759615953640396
|
||||
0.662 0.18636617572768033
|
||||
0.664 0.18513804850146542
|
||||
0.666 0.1839117694758734
|
||||
0.668 0.182687330331898
|
||||
0.67 0.18146472281275494
|
||||
0.672 0.18024393872323208
|
||||
0.674 0.17902496992904826
|
||||
0.676 0.17780780835622134
|
||||
0.678 0.17659244599044388
|
||||
0.68 0.17537887487646786
|
||||
0.682 0.17416708711749684
|
||||
0.684 0.17295707487458667
|
||||
0.686 0.1717488303660537
|
||||
0.6880000000000001 0.1705423458668911
|
||||
0.6900000000000001 0.16933761370819245
|
||||
0.6920000000000001 0.16813462627658315
|
||||
0.6940000000000001 0.16693337601365876
|
||||
0.6960000000000001 0.1657338554154315
|
||||
0.6980000000000001 0.1645360570317831
|
||||
0.7000000000000001 0.16333997346592444
|
||||
0.7020000000000001 0.16214559737386347
|
||||
0.704 0.16095292146387874
|
||||
0.706 0.15976193849599984
|
||||
0.708 0.15857264128149484
|
||||
0.71 0.1573850226823642
|
||||
0.712 0.15619907561084057
|
||||
0.714 0.15501479302889565
|
||||
0.716 0.15383216794775278
|
||||
0.718 0.15265119342740563
|
||||
0.72 0.15147186257614298
|
||||
0.722 0.15029416855007993
|
||||
0.724 0.14911810455269414
|
||||
0.726 0.1479436638343683
|
||||
0.728 0.14677083969193838
|
||||
0.73 0.1455996254682469
|
||||
0.732 0.14443001455170246
|
||||
0.734 0.14326200037584425
|
||||
0.736 0.14209557641891135
|
||||
0.738 0.14093073620341878
|
||||
0.74 0.13976747329573735
|
||||
0.742 0.1386057813056788
|
||||
0.744 0.13744565388608698
|
||||
0.746 0.13628708473243267
|
||||
0.748 0.13513006758241386
|
||||
0.75 0.1339745962155614
|
||||
0.752 0.13282066445284801
|
||||
0.754 0.13166826615630356
|
||||
0.756 0.1305173952286337
|
||||
0.758 0.12936804561284332
|
||||
0.76 0.12822021129186534
|
||||
0.762 0.12707388628819216
|
||||
0.764 0.12592906466351372
|
||||
0.766 0.12478574051835745
|
||||
0.768 0.12364390799173419
|
||||
0.77 0.12250356126078776
|
||||
0.772 0.12136469454044818
|
||||
0.774 0.12022730208308918
|
||||
0.776 0.11909137817819038
|
||||
0.778 0.11795691715200218
|
||||
0.78 0.11682391336721532
|
||||
0.782 0.11569236122263427
|
||||
0.784 0.11456225515285379
|
||||
0.786 0.11343358962793992
|
||||
0.788 0.11230635915311415
|
||||
0.79 0.11118055826844109
|
||||
0.792 0.11005618154852037
|
||||
0.794 0.10893322360218138
|
||||
0.796 0.10781167907218148
|
||||
0.798 0.10669154263490821
|
||||
0.8 0.10557280900008414
|
||||
0.802 0.10445547291047552
|
||||
0.804 0.10333952914160416
|
||||
0.806 0.10222497250146234
|
||||
0.808 0.10111179783023072
|
||||
0.81 0.09999999999999998
|
||||
0.812 0.09888957391449515
|
||||
0.8140000000000001 0.0977805145088031
|
||||
0.8160000000000001 0.09667281674910277
|
||||
0.8180000000000001 0.09556647563239895
|
||||
0.8200000000000001 0.09446148618625827
|
||||
0.8220000000000001 0.09335784346854903
|
||||
0.8240000000000001 0.0922555425671826
|
||||
0.8260000000000001 0.09115457859985887
|
||||
0.8280000000000001 0.09005494671381387
|
||||
0.8300000000000001 0.08895664208557008
|
||||
0.8320000000000001 0.08785965992068956
|
||||
0.834 0.08676399545353009
|
||||
0.836 0.08566964394700316
|
||||
0.838 0.08457660069233541
|
||||
0.84 0.08348486100883201
|
||||
0.842 0.08239442024364307
|
||||
0.844 0.08130527377153185
|
||||
0.846 0.08021741699464646
|
||||
0.848 0.07913084534229298
|
||||
0.85 0.07804555427071125
|
||||
0.852 0.07696153926285387
|
||||
0.854 0.07587879582816626
|
||||
0.856 0.07479731950236979
|
||||
0.858 0.07371710584724711
|
||||
0.86 0.07263815045042965
|
||||
0.862 0.0715604489251872
|
||||
0.864 0.07048399691022
|
||||
0.866 0.06940879006945266
|
||||
0.868 0.06833482409183078
|
||||
0.87 0.06726209469111855
|
||||
0.872 0.06619059760569979
|
||||
0.874 0.06512032859838057
|
||||
0.876 0.06405128345619282
|
||||
0.878 0.06298345799020177
|
||||
0.88 0.061916848035314054
|
||||
0.882 0.06085144945008836
|
||||
0.884 0.05978725811654728
|
||||
0.886 0.05872426993999258
|
||||
0.888 0.05766248084882031
|
||||
0.89 0.05660188679433964
|
||||
0.892 0.05554248375059245
|
||||
0.894 0.05448426771417492
|
||||
0.896 0.05342723470406141
|
||||
0.898 0.05237138076142933
|
||||
0.9 0.05131670194948623
|
||||
0.902 0.050263194353298735
|
||||
0.904 0.049210854079623
|
||||
0.906 0.04815967725673653
|
||||
0.908 0.047109660034272305
|
||||
0.91 0.04606079858305434
|
||||
0.912 0.04501308909493418
|
||||
0.914 0.04396652778263044
|
||||
0.916 0.04292111087956807
|
||||
0.918 0.04187683463972125
|
||||
0.92 0.040833695337456066
|
||||
0.922 0.03979168926737564
|
||||
0.924 0.038750812744166696
|
||||
0.926 0.037711062102447346
|
||||
0.928 0.036672433696616324
|
||||
0.93 0.03563492390070444
|
||||
0.932 0.03459852910822636
|
||||
0.934 0.0335632457320344
|
||||
0.936 0.03252907020417406
|
||||
0.9380000000000001 0.03149599897573985
|
||||
0.9400000000000001 0.030464028516734132
|
||||
0.9420000000000001 0.02943315531592572
|
||||
0.9440000000000001 0.028403375880710402
|
||||
0.9460000000000001 0.02737468673697374
|
||||
0.9480000000000001 0.02634708442895317
|
||||
0.9500000000000001 0.025320565519103555
|
||||
0.9520000000000001 0.024295126587962512
|
||||
0.9540000000000001 0.023270764234017527
|
||||
0.9560000000000001 0.022247475073574607
|
||||
0.9580000000000001 0.021225255740627502
|
||||
0.96 0.020204102886728803
|
||||
0.962 0.019184013180861714
|
||||
0.964 0.01816498330931382
|
||||
0.966 0.017147009975550853
|
||||
0.968 0.01613008990009257
|
||||
0.97 0.015114219820389518
|
||||
0.972 0.014099396490701022
|
||||
0.974 0.013085616681973833
|
||||
0.976 0.012072877181722452
|
||||
0.978 0.011061174793910777
|
||||
0.98 0.01005050633883342
|
||||
0.982 0.009040868653000356
|
||||
0.984 0.008032258589020458
|
||||
0.986 0.007024673015487259
|
||||
0.988 0.006018108816865819
|
||||
0.99 0.005012562893380035
|
||||
0.992 0.004008032160901398
|
||||
0.994 0.003004513550838639
|
||||
0.996 0.0020020040100280356
|
||||
0.998 0.0010005005006258338
|
||||
1.0 0.0
|
252
resources/MOPReference/T2_250.txt
Normal file
@@ -0,0 +1,252 @@
|
||||
x1 x2
|
||||
0.0 1.0
|
||||
0.0040 0.999984
|
||||
0.0080 0.999936
|
||||
0.012 0.999856
|
||||
0.016 0.999744
|
||||
0.02 0.9996
|
||||
0.024 0.999424
|
||||
0.028 0.999216
|
||||
0.032 0.998976
|
||||
0.036000000000000004 0.998704
|
||||
0.04 0.9984
|
||||
0.044 0.998064
|
||||
0.048 0.997696
|
||||
0.052000000000000005 0.997296
|
||||
0.056 0.996864
|
||||
0.06 0.9964
|
||||
0.064 0.995904
|
||||
0.068 0.995376
|
||||
0.07200000000000001 0.994816
|
||||
0.076 0.994224
|
||||
0.08 0.9936
|
||||
0.084 0.992944
|
||||
0.088 0.992256
|
||||
0.092 0.991536
|
||||
0.096 0.990784
|
||||
0.1 0.99
|
||||
0.10400000000000001 0.989184
|
||||
0.108 0.988336
|
||||
0.112 0.987456
|
||||
0.116 0.986544
|
||||
0.12 0.9856
|
||||
0.124 0.984624
|
||||
0.128 0.983616
|
||||
0.132 0.982576
|
||||
0.136 0.981504
|
||||
0.14 0.9804
|
||||
0.14400000000000002 0.979264
|
||||
0.148 0.978096
|
||||
0.152 0.976896
|
||||
0.156 0.975664
|
||||
0.16 0.9744
|
||||
0.164 0.973104
|
||||
0.168 0.971776
|
||||
0.17200000000000001 0.970416
|
||||
0.176 0.969024
|
||||
0.18 0.9676
|
||||
0.184 0.966144
|
||||
0.188 0.964656
|
||||
0.192 0.963136
|
||||
0.196 0.961584
|
||||
0.2 0.96
|
||||
0.20400000000000001 0.958384
|
||||
0.20800000000000002 0.956736
|
||||
0.212 0.955056
|
||||
0.216 0.953344
|
||||
0.22 0.9516
|
||||
0.224 0.949824
|
||||
0.228 0.948016
|
||||
0.232 0.946176
|
||||
0.23600000000000002 0.944304
|
||||
0.24 0.9424
|
||||
0.244 0.940464
|
||||
0.248 0.938496
|
||||
0.252 0.936496
|
||||
0.256 0.934464
|
||||
0.26 0.9324
|
||||
0.264 0.930304
|
||||
0.268 0.928176
|
||||
0.272 0.926016
|
||||
0.276 0.923824
|
||||
0.28 0.9216
|
||||
0.28400000000000003 0.9193439999999999
|
||||
0.28800000000000003 0.917056
|
||||
0.292 0.914736
|
||||
0.296 0.912384
|
||||
0.3 0.91
|
||||
0.304 0.907584
|
||||
0.308 0.9051359999999999
|
||||
0.312 0.902656
|
||||
0.316 0.900144
|
||||
0.32 0.8976
|
||||
0.324 0.895024
|
||||
0.328 0.892416
|
||||
0.332 0.889776
|
||||
0.336 0.887104
|
||||
0.34 0.8844
|
||||
0.34400000000000003 0.881664
|
||||
0.34800000000000003 0.878896
|
||||
0.352 0.876096
|
||||
0.356 0.873264
|
||||
0.36 0.8704000000000001
|
||||
0.364 0.867504
|
||||
0.368 0.864576
|
||||
0.372 0.8616159999999999
|
||||
0.376 0.858624
|
||||
0.38 0.8556
|
||||
0.384 0.852544
|
||||
0.388 0.849456
|
||||
0.392 0.846336
|
||||
0.396 0.8431839999999999
|
||||
0.4 0.84
|
||||
0.404 0.836784
|
||||
0.40800000000000003 0.8335359999999999
|
||||
0.41200000000000003 0.830256
|
||||
0.41600000000000004 0.8269439999999999
|
||||
0.42 0.8236
|
||||
0.424 0.8202240000000001
|
||||
0.428 0.816816
|
||||
0.432 0.813376
|
||||
0.436 0.809904
|
||||
0.44 0.8064
|
||||
0.444 0.802864
|
||||
0.448 0.799296
|
||||
0.452 0.795696
|
||||
0.456 0.792064
|
||||
0.46 0.7884
|
||||
0.464 0.784704
|
||||
0.468 0.780976
|
||||
0.47200000000000003 0.7772159999999999
|
||||
0.47600000000000003 0.773424
|
||||
0.48 0.7696000000000001
|
||||
0.484 0.765744
|
||||
0.488 0.761856
|
||||
0.492 0.7579359999999999
|
||||
0.496 0.753984
|
||||
0.5 0.75
|
||||
0.504 0.745984
|
||||
0.508 0.7419359999999999
|
||||
0.512 0.7378560000000001
|
||||
0.516 0.733744
|
||||
0.52 0.7296
|
||||
0.524 0.725424
|
||||
0.528 0.721216
|
||||
0.532 0.716976
|
||||
0.536 0.712704
|
||||
0.54 0.7083999999999999
|
||||
0.544 0.704064
|
||||
0.548 0.6996959999999999
|
||||
0.552 0.6952959999999999
|
||||
0.556 0.6908639999999999
|
||||
0.56 0.6863999999999999
|
||||
0.5640000000000001 0.681904
|
||||
0.5680000000000001 0.677376
|
||||
0.5720000000000001 0.6728159999999999
|
||||
0.5760000000000001 0.6682239999999999
|
||||
0.58 0.6636
|
||||
0.584 0.658944
|
||||
0.588 0.6542560000000001
|
||||
0.592 0.6495360000000001
|
||||
0.596 0.644784
|
||||
0.6 0.64
|
||||
0.604 0.635184
|
||||
0.608 0.630336
|
||||
0.612 0.625456
|
||||
0.616 0.620544
|
||||
0.62 0.6155999999999999
|
||||
0.624 0.6106240000000001
|
||||
0.628 0.6056159999999999
|
||||
0.632 0.600576
|
||||
0.636 0.595504
|
||||
0.64 0.5904
|
||||
0.644 0.585264
|
||||
0.648 0.580096
|
||||
0.652 0.574896
|
||||
0.656 0.569664
|
||||
0.66 0.5644
|
||||
0.664 0.5591039999999999
|
||||
0.668 0.5537759999999999
|
||||
0.672 0.548416
|
||||
0.676 0.543024
|
||||
0.68 0.5375999999999999
|
||||
0.684 0.532144
|
||||
0.6880000000000001 0.5266559999999999
|
||||
0.6920000000000001 0.5211359999999999
|
||||
0.6960000000000001 0.5155839999999999
|
||||
0.7000000000000001 0.5099999999999999
|
||||
0.704 0.504384
|
||||
0.708 0.49873600000000007
|
||||
0.712 0.49305600000000005
|
||||
0.716 0.487344
|
||||
0.72 0.48160000000000003
|
||||
0.724 0.475824
|
||||
0.728 0.470016
|
||||
0.732 0.46417600000000003
|
||||
0.736 0.45830400000000004
|
||||
0.74 0.4524
|
||||
0.744 0.44646399999999997
|
||||
0.748 0.440496
|
||||
0.752 0.434496
|
||||
0.756 0.42846399999999996
|
||||
0.76 0.4224
|
||||
0.764 0.416304
|
||||
0.768 0.410176
|
||||
0.772 0.40401599999999993
|
||||
0.776 0.39782399999999996
|
||||
0.78 0.39159999999999995
|
||||
0.784 0.3853439999999999
|
||||
0.788 0.37905599999999995
|
||||
0.792 0.37273599999999996
|
||||
0.796 0.36638399999999993
|
||||
0.8 0.3599999999999999
|
||||
0.804 0.3535839999999999
|
||||
0.808 0.3471359999999999
|
||||
0.812 0.34065599999999996
|
||||
0.8160000000000001 0.3341439999999999
|
||||
0.8200000000000001 0.3275999999999999
|
||||
0.8240000000000001 0.32102399999999987
|
||||
0.8280000000000001 0.3144159999999999
|
||||
0.8320000000000001 0.3077759999999998
|
||||
0.836 0.30110400000000004
|
||||
0.84 0.2944000000000001
|
||||
0.844 0.28766400000000003
|
||||
0.848 0.28089600000000003
|
||||
0.852 0.274096
|
||||
0.856 0.26726400000000006
|
||||
0.86 0.2604000000000001
|
||||
0.864 0.25350400000000006
|
||||
0.868 0.24657600000000002
|
||||
0.872 0.23961600000000005
|
||||
0.876 0.23262400000000005
|
||||
0.88 0.22560000000000002
|
||||
0.884 0.21854399999999996
|
||||
0.888 0.21145599999999998
|
||||
0.892 0.20433599999999996
|
||||
0.896 0.19718399999999991
|
||||
0.9 0.18999999999999995
|
||||
0.904 0.18278399999999995
|
||||
0.908 0.17553599999999991
|
||||
0.912 0.16825599999999996
|
||||
0.916 0.16094399999999998
|
||||
0.92 0.15359999999999996
|
||||
0.924 0.1462239999999999
|
||||
0.928 0.13881599999999994
|
||||
0.932 0.13137599999999994
|
||||
0.936 0.1239039999999999
|
||||
0.9400000000000001 0.11639999999999984
|
||||
0.9440000000000001 0.10886399999999985
|
||||
0.9480000000000001 0.10129599999999983
|
||||
0.9520000000000001 0.09369599999999989
|
||||
0.9560000000000001 0.08606399999999981
|
||||
0.96 0.07840000000000003
|
||||
0.964 0.0707040000000001
|
||||
0.968 0.06297600000000003
|
||||
0.972 0.05521600000000004
|
||||
0.976 0.04742400000000002
|
||||
0.98 0.03960000000000008
|
||||
0.984 0.031743999999999994
|
||||
0.988 0.02385599999999999
|
||||
0.992 0.01593600000000006
|
||||
0.996 0.007983999999999991
|
||||
1.0 0.0
|
502
resources/MOPReference/T2_500.txt
Normal file
@@ -0,0 +1,502 @@
|
||||
x1 x2
|
||||
0.0 1.0
|
||||
0.0020 0.999996
|
||||
0.0040 0.999984
|
||||
0.0060 0.999964
|
||||
0.0080 0.999936
|
||||
0.01 0.9999
|
||||
0.012 0.999856
|
||||
0.014 0.999804
|
||||
0.016 0.999744
|
||||
0.018000000000000002 0.999676
|
||||
0.02 0.9996
|
||||
0.022 0.999516
|
||||
0.024 0.999424
|
||||
0.026000000000000002 0.999324
|
||||
0.028 0.999216
|
||||
0.03 0.9991
|
||||
0.032 0.998976
|
||||
0.034 0.998844
|
||||
0.036000000000000004 0.998704
|
||||
0.038 0.998556
|
||||
0.04 0.9984
|
||||
0.042 0.998236
|
||||
0.044 0.998064
|
||||
0.046 0.997884
|
||||
0.048 0.997696
|
||||
0.05 0.9975
|
||||
0.052000000000000005 0.997296
|
||||
0.054 0.997084
|
||||
0.056 0.996864
|
||||
0.058 0.996636
|
||||
0.06 0.9964
|
||||
0.062 0.996156
|
||||
0.064 0.995904
|
||||
0.066 0.995644
|
||||
0.068 0.995376
|
||||
0.07 0.9951
|
||||
0.07200000000000001 0.994816
|
||||
0.074 0.994524
|
||||
0.076 0.994224
|
||||
0.078 0.993916
|
||||
0.08 0.9936
|
||||
0.082 0.993276
|
||||
0.084 0.992944
|
||||
0.08600000000000001 0.992604
|
||||
0.088 0.992256
|
||||
0.09 0.9919
|
||||
0.092 0.991536
|
||||
0.094 0.991164
|
||||
0.096 0.990784
|
||||
0.098 0.990396
|
||||
0.1 0.99
|
||||
0.10200000000000001 0.989596
|
||||
0.10400000000000001 0.989184
|
||||
0.106 0.988764
|
||||
0.108 0.988336
|
||||
0.11 0.9879
|
||||
0.112 0.987456
|
||||
0.114 0.987004
|
||||
0.116 0.986544
|
||||
0.11800000000000001 0.986076
|
||||
0.12 0.9856
|
||||
0.122 0.985116
|
||||
0.124 0.984624
|
||||
0.126 0.984124
|
||||
0.128 0.983616
|
||||
0.13 0.9831
|
||||
0.132 0.982576
|
||||
0.134 0.982044
|
||||
0.136 0.981504
|
||||
0.138 0.980956
|
||||
0.14 0.9804
|
||||
0.14200000000000002 0.979836
|
||||
0.14400000000000002 0.979264
|
||||
0.146 0.978684
|
||||
0.148 0.978096
|
||||
0.15 0.9775
|
||||
0.152 0.976896
|
||||
0.154 0.976284
|
||||
0.156 0.975664
|
||||
0.158 0.975036
|
||||
0.16 0.9744
|
||||
0.162 0.973756
|
||||
0.164 0.973104
|
||||
0.166 0.972444
|
||||
0.168 0.971776
|
||||
0.17 0.9711
|
||||
0.17200000000000001 0.970416
|
||||
0.17400000000000002 0.969724
|
||||
0.176 0.969024
|
||||
0.178 0.968316
|
||||
0.18 0.9676
|
||||
0.182 0.966876
|
||||
0.184 0.966144
|
||||
0.186 0.965404
|
||||
0.188 0.964656
|
||||
0.19 0.9639
|
||||
0.192 0.963136
|
||||
0.194 0.962364
|
||||
0.196 0.961584
|
||||
0.198 0.960796
|
||||
0.2 0.96
|
||||
0.202 0.9591959999999999
|
||||
0.20400000000000001 0.958384
|
||||
0.20600000000000002 0.957564
|
||||
0.20800000000000002 0.956736
|
||||
0.21 0.9559
|
||||
0.212 0.955056
|
||||
0.214 0.954204
|
||||
0.216 0.953344
|
||||
0.218 0.952476
|
||||
0.22 0.9516
|
||||
0.222 0.950716
|
||||
0.224 0.949824
|
||||
0.226 0.948924
|
||||
0.228 0.948016
|
||||
0.23 0.9471
|
||||
0.232 0.946176
|
||||
0.234 0.945244
|
||||
0.23600000000000002 0.944304
|
||||
0.23800000000000002 0.943356
|
||||
0.24 0.9424
|
||||
0.242 0.941436
|
||||
0.244 0.940464
|
||||
0.246 0.939484
|
||||
0.248 0.938496
|
||||
0.25 0.9375
|
||||
0.252 0.936496
|
||||
0.254 0.935484
|
||||
0.256 0.934464
|
||||
0.258 0.933436
|
||||
0.26 0.9324
|
||||
0.262 0.931356
|
||||
0.264 0.930304
|
||||
0.266 0.929244
|
||||
0.268 0.928176
|
||||
0.27 0.9271
|
||||
0.272 0.926016
|
||||
0.274 0.924924
|
||||
0.276 0.923824
|
||||
0.278 0.922716
|
||||
0.28 0.9216
|
||||
0.28200000000000003 0.920476
|
||||
0.28400000000000003 0.9193439999999999
|
||||
0.28600000000000003 0.918204
|
||||
0.28800000000000003 0.917056
|
||||
0.29 0.9159
|
||||
0.292 0.914736
|
||||
0.294 0.913564
|
||||
0.296 0.912384
|
||||
0.298 0.911196
|
||||
0.3 0.91
|
||||
0.302 0.908796
|
||||
0.304 0.907584
|
||||
0.306 0.906364
|
||||
0.308 0.9051359999999999
|
||||
0.31 0.9039
|
||||
0.312 0.902656
|
||||
0.314 0.901404
|
||||
0.316 0.900144
|
||||
0.318 0.898876
|
||||
0.32 0.8976
|
||||
0.322 0.896316
|
||||
0.324 0.895024
|
||||
0.326 0.893724
|
||||
0.328 0.892416
|
||||
0.33 0.8911
|
||||
0.332 0.889776
|
||||
0.334 0.888444
|
||||
0.336 0.887104
|
||||
0.338 0.885756
|
||||
0.34 0.8844
|
||||
0.342 0.8830359999999999
|
||||
0.34400000000000003 0.881664
|
||||
0.34600000000000003 0.880284
|
||||
0.34800000000000003 0.878896
|
||||
0.35000000000000003 0.8775
|
||||
0.352 0.876096
|
||||
0.354 0.874684
|
||||
0.356 0.873264
|
||||
0.358 0.871836
|
||||
0.36 0.8704000000000001
|
||||
0.362 0.8689560000000001
|
||||
0.364 0.867504
|
||||
0.366 0.866044
|
||||
0.368 0.864576
|
||||
0.37 0.8631
|
||||
0.372 0.8616159999999999
|
||||
0.374 0.860124
|
||||
0.376 0.858624
|
||||
0.378 0.857116
|
||||
0.38 0.8556
|
||||
0.382 0.8540760000000001
|
||||
0.384 0.852544
|
||||
0.386 0.851004
|
||||
0.388 0.849456
|
||||
0.39 0.8479
|
||||
0.392 0.846336
|
||||
0.394 0.844764
|
||||
0.396 0.8431839999999999
|
||||
0.398 0.841596
|
||||
0.4 0.84
|
||||
0.402 0.8383959999999999
|
||||
0.404 0.836784
|
||||
0.406 0.835164
|
||||
0.40800000000000003 0.8335359999999999
|
||||
0.41000000000000003 0.8319
|
||||
0.41200000000000003 0.830256
|
||||
0.41400000000000003 0.828604
|
||||
0.41600000000000004 0.8269439999999999
|
||||
0.418 0.825276
|
||||
0.42 0.8236
|
||||
0.422 0.821916
|
||||
0.424 0.8202240000000001
|
||||
0.426 0.818524
|
||||
0.428 0.816816
|
||||
0.43 0.8151
|
||||
0.432 0.813376
|
||||
0.434 0.811644
|
||||
0.436 0.809904
|
||||
0.438 0.808156
|
||||
0.44 0.8064
|
||||
0.442 0.804636
|
||||
0.444 0.802864
|
||||
0.446 0.801084
|
||||
0.448 0.799296
|
||||
0.45 0.7975
|
||||
0.452 0.795696
|
||||
0.454 0.793884
|
||||
0.456 0.792064
|
||||
0.458 0.7902359999999999
|
||||
0.46 0.7884
|
||||
0.462 0.786556
|
||||
0.464 0.784704
|
||||
0.466 0.782844
|
||||
0.468 0.780976
|
||||
0.47000000000000003 0.7790999999999999
|
||||
0.47200000000000003 0.7772159999999999
|
||||
0.47400000000000003 0.7753239999999999
|
||||
0.47600000000000003 0.773424
|
||||
0.47800000000000004 0.771516
|
||||
0.48 0.7696000000000001
|
||||
0.482 0.767676
|
||||
0.484 0.765744
|
||||
0.486 0.763804
|
||||
0.488 0.761856
|
||||
0.49 0.7599
|
||||
0.492 0.7579359999999999
|
||||
0.494 0.755964
|
||||
0.496 0.753984
|
||||
0.498 0.751996
|
||||
0.5 0.75
|
||||
0.502 0.747996
|
||||
0.504 0.745984
|
||||
0.506 0.7439640000000001
|
||||
0.508 0.7419359999999999
|
||||
0.51 0.7399
|
||||
0.512 0.7378560000000001
|
||||
0.514 0.735804
|
||||
0.516 0.733744
|
||||
0.518 0.731676
|
||||
0.52 0.7296
|
||||
0.522 0.727516
|
||||
0.524 0.725424
|
||||
0.526 0.723324
|
||||
0.528 0.721216
|
||||
0.53 0.7191
|
||||
0.532 0.716976
|
||||
0.534 0.714844
|
||||
0.536 0.712704
|
||||
0.538 0.710556
|
||||
0.54 0.7083999999999999
|
||||
0.542 0.706236
|
||||
0.544 0.704064
|
||||
0.546 0.701884
|
||||
0.548 0.6996959999999999
|
||||
0.55 0.6975
|
||||
0.552 0.6952959999999999
|
||||
0.554 0.6930839999999999
|
||||
0.556 0.6908639999999999
|
||||
0.558 0.6886359999999999
|
||||
0.56 0.6863999999999999
|
||||
0.562 0.684156
|
||||
0.5640000000000001 0.681904
|
||||
0.5660000000000001 0.6796439999999999
|
||||
0.5680000000000001 0.677376
|
||||
0.5700000000000001 0.6750999999999999
|
||||
0.5720000000000001 0.6728159999999999
|
||||
0.5740000000000001 0.6705239999999999
|
||||
0.5760000000000001 0.6682239999999999
|
||||
0.578 0.6659160000000001
|
||||
0.58 0.6636
|
||||
0.582 0.661276
|
||||
0.584 0.658944
|
||||
0.586 0.656604
|
||||
0.588 0.6542560000000001
|
||||
0.59 0.6519
|
||||
0.592 0.6495360000000001
|
||||
0.594 0.6471640000000001
|
||||
0.596 0.644784
|
||||
0.598 0.642396
|
||||
0.6 0.64
|
||||
0.602 0.637596
|
||||
0.604 0.635184
|
||||
0.606 0.632764
|
||||
0.608 0.630336
|
||||
0.61 0.6279
|
||||
0.612 0.625456
|
||||
0.614 0.623004
|
||||
0.616 0.620544
|
||||
0.618 0.6180760000000001
|
||||
0.62 0.6155999999999999
|
||||
0.622 0.613116
|
||||
0.624 0.6106240000000001
|
||||
0.626 0.608124
|
||||
0.628 0.6056159999999999
|
||||
0.63 0.6031
|
||||
0.632 0.600576
|
||||
0.634 0.598044
|
||||
0.636 0.595504
|
||||
0.638 0.592956
|
||||
0.64 0.5904
|
||||
0.642 0.587836
|
||||
0.644 0.585264
|
||||
0.646 0.582684
|
||||
0.648 0.580096
|
||||
0.65 0.5774999999999999
|
||||
0.652 0.574896
|
||||
0.654 0.572284
|
||||
0.656 0.569664
|
||||
0.658 0.567036
|
||||
0.66 0.5644
|
||||
0.662 0.5617559999999999
|
||||
0.664 0.5591039999999999
|
||||
0.666 0.5564439999999999
|
||||
0.668 0.5537759999999999
|
||||
0.67 0.5510999999999999
|
||||
0.672 0.548416
|
||||
0.674 0.5457239999999999
|
||||
0.676 0.543024
|
||||
0.678 0.540316
|
||||
0.68 0.5375999999999999
|
||||
0.682 0.5348759999999999
|
||||
0.684 0.532144
|
||||
0.686 0.529404
|
||||
0.6880000000000001 0.5266559999999999
|
||||
0.6900000000000001 0.5238999999999999
|
||||
0.6920000000000001 0.5211359999999999
|
||||
0.6940000000000001 0.5183639999999999
|
||||
0.6960000000000001 0.5155839999999999
|
||||
0.6980000000000001 0.5127959999999999
|
||||
0.7000000000000001 0.5099999999999999
|
||||
0.7020000000000001 0.507196
|
||||
0.704 0.504384
|
||||
0.706 0.5015640000000001
|
||||
0.708 0.49873600000000007
|
||||
0.71 0.4959
|
||||
0.712 0.49305600000000005
|
||||
0.714 0.4902040000000001
|
||||
0.716 0.487344
|
||||
0.718 0.484476
|
||||
0.72 0.48160000000000003
|
||||
0.722 0.47871600000000003
|
||||
0.724 0.475824
|
||||
0.726 0.472924
|
||||
0.728 0.470016
|
||||
0.73 0.46710000000000007
|
||||
0.732 0.46417600000000003
|
||||
0.734 0.461244
|
||||
0.736 0.45830400000000004
|
||||
0.738 0.455356
|
||||
0.74 0.4524
|
||||
0.742 0.44943600000000006
|
||||
0.744 0.44646399999999997
|
||||
0.746 0.443484
|
||||
0.748 0.440496
|
||||
0.75 0.4375
|
||||
0.752 0.434496
|
||||
0.754 0.431484
|
||||
0.756 0.42846399999999996
|
||||
0.758 0.42543600000000004
|
||||
0.76 0.4224
|
||||
0.762 0.41935599999999995
|
||||
0.764 0.416304
|
||||
0.766 0.41324399999999994
|
||||
0.768 0.410176
|
||||
0.77 0.4071
|
||||
0.772 0.40401599999999993
|
||||
0.774 0.40092399999999995
|
||||
0.776 0.39782399999999996
|
||||
0.778 0.39471599999999996
|
||||
0.78 0.39159999999999995
|
||||
0.782 0.38847599999999993
|
||||
0.784 0.3853439999999999
|
||||
0.786 0.382204
|
||||
0.788 0.37905599999999995
|
||||
0.79 0.3758999999999999
|
||||
0.792 0.37273599999999996
|
||||
0.794 0.3695639999999999
|
||||
0.796 0.36638399999999993
|
||||
0.798 0.36319599999999996
|
||||
0.8 0.3599999999999999
|
||||
0.802 0.3567959999999999
|
||||
0.804 0.3535839999999999
|
||||
0.806 0.3503639999999999
|
||||
0.808 0.3471359999999999
|
||||
0.81 0.3438999999999999
|
||||
0.812 0.34065599999999996
|
||||
0.8140000000000001 0.3374039999999999
|
||||
0.8160000000000001 0.3341439999999999
|
||||
0.8180000000000001 0.33087599999999995
|
||||
0.8200000000000001 0.3275999999999999
|
||||
0.8220000000000001 0.32431599999999994
|
||||
0.8240000000000001 0.32102399999999987
|
||||
0.8260000000000001 0.3177239999999999
|
||||
0.8280000000000001 0.3144159999999999
|
||||
0.8300000000000001 0.31109999999999993
|
||||
0.8320000000000001 0.3077759999999998
|
||||
0.834 0.30444400000000005
|
||||
0.836 0.30110400000000004
|
||||
0.838 0.297756
|
||||
0.84 0.2944000000000001
|
||||
0.842 0.2910360000000001
|
||||
0.844 0.28766400000000003
|
||||
0.846 0.2842840000000001
|
||||
0.848 0.28089600000000003
|
||||
0.85 0.2775000000000001
|
||||
0.852 0.274096
|
||||
0.854 0.27068400000000004
|
||||
0.856 0.26726400000000006
|
||||
0.858 0.26383600000000007
|
||||
0.86 0.2604000000000001
|
||||
0.862 0.2569560000000001
|
||||
0.864 0.25350400000000006
|
||||
0.866 0.25004400000000004
|
||||
0.868 0.24657600000000002
|
||||
0.87 0.24309999999999998
|
||||
0.872 0.23961600000000005
|
||||
0.874 0.236124
|
||||
0.876 0.23262400000000005
|
||||
0.878 0.229116
|
||||
0.88 0.22560000000000002
|
||||
0.882 0.22207599999999994
|
||||
0.884 0.21854399999999996
|
||||
0.886 0.21500399999999997
|
||||
0.888 0.21145599999999998
|
||||
0.89 0.20789999999999997
|
||||
0.892 0.20433599999999996
|
||||
0.894 0.20076399999999994
|
||||
0.896 0.19718399999999991
|
||||
0.898 0.193596
|
||||
0.9 0.18999999999999995
|
||||
0.902 0.186396
|
||||
0.904 0.18278399999999995
|
||||
0.906 0.179164
|
||||
0.908 0.17553599999999991
|
||||
0.91 0.17189999999999994
|
||||
0.912 0.16825599999999996
|
||||
0.914 0.16460399999999997
|
||||
0.916 0.16094399999999998
|
||||
0.918 0.15727599999999997
|
||||
0.92 0.15359999999999996
|
||||
0.922 0.14991599999999994
|
||||
0.924 0.1462239999999999
|
||||
0.926 0.14252399999999987
|
||||
0.928 0.13881599999999994
|
||||
0.93 0.1350999999999999
|
||||
0.932 0.13137599999999994
|
||||
0.934 0.12764399999999987
|
||||
0.936 0.1239039999999999
|
||||
0.9380000000000001 0.12015599999999993
|
||||
0.9400000000000001 0.11639999999999984
|
||||
0.9420000000000001 0.11263599999999985
|
||||
0.9440000000000001 0.10886399999999985
|
||||
0.9460000000000001 0.10508399999999984
|
||||
0.9480000000000001 0.10129599999999983
|
||||
0.9500000000000001 0.09749999999999992
|
||||
0.9520000000000001 0.09369599999999989
|
||||
0.9540000000000001 0.08988399999999985
|
||||
0.9560000000000001 0.08606399999999981
|
||||
0.9580000000000001 0.08223599999999986
|
||||
0.96 0.07840000000000003
|
||||
0.962 0.07455600000000007
|
||||
0.964 0.0707040000000001
|
||||
0.966 0.06684400000000001
|
||||
0.968 0.06297600000000003
|
||||
0.97 0.05910000000000004
|
||||
0.972 0.05521600000000004
|
||||
0.974 0.051324000000000036
|
||||
0.976 0.04742400000000002
|
||||
0.978 0.043516
|
||||
0.98 0.03960000000000008
|
||||
0.982 0.03567600000000004
|
||||
0.984 0.031743999999999994
|
||||
0.986 0.02780400000000005
|
||||
0.988 0.02385599999999999
|
||||
0.99 0.01990000000000003
|
||||
0.992 0.01593600000000006
|
||||
0.994 0.011963999999999975
|
||||
0.996 0.007983999999999991
|
||||
0.998 0.0039959999999999996
|
||||
1.0 0.0
|
52
resources/MOPReference/T6_50.txt
Normal file
@@ -0,0 +1,52 @@
|
||||
x1 x2
|
||||
0.0 1.0
|
||||
0.02 0.9996
|
||||
0.04 0.9984
|
||||
0.06 0.9964
|
||||
0.08 0.9936
|
||||
0.1 0.99
|
||||
0.12 0.9856
|
||||
0.14 0.9804
|
||||
0.16 0.9744
|
||||
0.18 0.9676
|
||||
0.2 0.96
|
||||
0.22 0.9516
|
||||
0.24 0.9424
|
||||
0.26 0.9324
|
||||
0.28 0.9216
|
||||
0.3 0.91
|
||||
0.32 0.8976
|
||||
0.34 0.8844
|
||||
0.36 0.8704000000000001
|
||||
0.38 0.8556
|
||||
0.4 0.84
|
||||
0.42 0.8236
|
||||
0.44 0.8064
|
||||
0.46 0.7884
|
||||
0.48 0.7696000000000001
|
||||
0.5 0.75
|
||||
0.52 0.7296
|
||||
0.54 0.7083999999999999
|
||||
0.56 0.6863999999999999
|
||||
0.58 0.6636
|
||||
0.6 0.64
|
||||
0.62 0.6155999999999999
|
||||
0.64 0.5904
|
||||
0.66 0.5644
|
||||
0.68 0.5375999999999999
|
||||
0.7000000000000001 0.5099999999999999
|
||||
0.72 0.48160000000000003
|
||||
0.74 0.4524
|
||||
0.76 0.4224
|
||||
0.78 0.39159999999999995
|
||||
0.8 0.3599999999999999
|
||||
0.8200000000000001 0.3275999999999999
|
||||
0.84 0.2944000000000001
|
||||
0.86 0.2604000000000001
|
||||
0.88 0.22560000000000002
|
||||
0.9 0.18999999999999995
|
||||
0.92 0.15359999999999996
|
||||
0.9400000000000001 0.11639999999999984
|
||||
0.96 0.07840000000000003
|
||||
0.98 0.03960000000000008
|
||||
1.0 0.0
|
502
resources/MOPReference/T6_500.txt
Normal file
@@ -0,0 +1,502 @@
|
||||
x1 x2
|
||||
0.0 1.0
|
||||
0.0020 0.999996
|
||||
0.0040 0.999984
|
||||
0.0060 0.999964
|
||||
0.0080 0.999936
|
||||
0.01 0.9999
|
||||
0.012 0.999856
|
||||
0.014 0.999804
|
||||
0.016 0.999744
|
||||
0.018000000000000002 0.999676
|
||||
0.02 0.9996
|
||||
0.022 0.999516
|
||||
0.024 0.999424
|
||||
0.026000000000000002 0.999324
|
||||
0.028 0.999216
|
||||
0.03 0.9991
|
||||
0.032 0.998976
|
||||
0.034 0.998844
|
||||
0.036000000000000004 0.998704
|
||||
0.038 0.998556
|
||||
0.04 0.9984
|
||||
0.042 0.998236
|
||||
0.044 0.998064
|
||||
0.046 0.997884
|
||||
0.048 0.997696
|
||||
0.05 0.9975
|
||||
0.052000000000000005 0.997296
|
||||
0.054 0.997084
|
||||
0.056 0.996864
|
||||
0.058 0.996636
|
||||
0.06 0.9964
|
||||
0.062 0.996156
|
||||
0.064 0.995904
|
||||
0.066 0.995644
|
||||
0.068 0.995376
|
||||
0.07 0.9951
|
||||
0.07200000000000001 0.994816
|
||||
0.074 0.994524
|
||||
0.076 0.994224
|
||||
0.078 0.993916
|
||||
0.08 0.9936
|
||||
0.082 0.993276
|
||||
0.084 0.992944
|
||||
0.08600000000000001 0.992604
|
||||
0.088 0.992256
|
||||
0.09 0.9919
|
||||
0.092 0.991536
|
||||
0.094 0.991164
|
||||
0.096 0.990784
|
||||
0.098 0.990396
|
||||
0.1 0.99
|
||||
0.10200000000000001 0.989596
|
||||
0.10400000000000001 0.989184
|
||||
0.106 0.988764
|
||||
0.108 0.988336
|
||||
0.11 0.9879
|
||||
0.112 0.987456
|
||||
0.114 0.987004
|
||||
0.116 0.986544
|
||||
0.11800000000000001 0.986076
|
||||
0.12 0.9856
|
||||
0.122 0.985116
|
||||
0.124 0.984624
|
||||
0.126 0.984124
|
||||
0.128 0.983616
|
||||
0.13 0.9831
|
||||
0.132 0.982576
|
||||
0.134 0.982044
|
||||
0.136 0.981504
|
||||
0.138 0.980956
|
||||
0.14 0.9804
|
||||
0.14200000000000002 0.979836
|
||||
0.14400000000000002 0.979264
|
||||
0.146 0.978684
|
||||
0.148 0.978096
|
||||
0.15 0.9775
|
||||
0.152 0.976896
|
||||
0.154 0.976284
|
||||
0.156 0.975664
|
||||
0.158 0.975036
|
||||
0.16 0.9744
|
||||
0.162 0.973756
|
||||
0.164 0.973104
|
||||
0.166 0.972444
|
||||
0.168 0.971776
|
||||
0.17 0.9711
|
||||
0.17200000000000001 0.970416
|
||||
0.17400000000000002 0.969724
|
||||
0.176 0.969024
|
||||
0.178 0.968316
|
||||
0.18 0.9676
|
||||
0.182 0.966876
|
||||
0.184 0.966144
|
||||
0.186 0.965404
|
||||
0.188 0.964656
|
||||
0.19 0.9639
|
||||
0.192 0.963136
|
||||
0.194 0.962364
|
||||
0.196 0.961584
|
||||
0.198 0.960796
|
||||
0.2 0.96
|
||||
0.202 0.9591959999999999
|
||||
0.20400000000000001 0.958384
|
||||
0.20600000000000002 0.957564
|
||||
0.20800000000000002 0.956736
|
||||
0.21 0.9559
|
||||
0.212 0.955056
|
||||
0.214 0.954204
|
||||
0.216 0.953344
|
||||
0.218 0.952476
|
||||
0.22 0.9516
|
||||
0.222 0.950716
|
||||
0.224 0.949824
|
||||
0.226 0.948924
|
||||
0.228 0.948016
|
||||
0.23 0.9471
|
||||
0.232 0.946176
|
||||
0.234 0.945244
|
||||
0.23600000000000002 0.944304
|
||||
0.23800000000000002 0.943356
|
||||
0.24 0.9424
|
||||
0.242 0.941436
|
||||
0.244 0.940464
|
||||
0.246 0.939484
|
||||
0.248 0.938496
|
||||
0.25 0.9375
|
||||
0.252 0.936496
|
||||
0.254 0.935484
|
||||
0.256 0.934464
|
||||
0.258 0.933436
|
||||
0.26 0.9324
|
||||
0.262 0.931356
|
||||
0.264 0.930304
|
||||
0.266 0.929244
|
||||
0.268 0.928176
|
||||
0.27 0.9271
|
||||
0.272 0.926016
|
||||
0.274 0.924924
|
||||
0.276 0.923824
|
||||
0.278 0.922716
|
||||
0.28 0.9216
|
||||
0.28200000000000003 0.920476
|
||||
0.28400000000000003 0.9193439999999999
|
||||
0.28600000000000003 0.918204
|
||||
0.28800000000000003 0.917056
|
||||
0.29 0.9159
|
||||
0.292 0.914736
|
||||
0.294 0.913564
|
||||
0.296 0.912384
|
||||
0.298 0.911196
|
||||
0.3 0.91
|
||||
0.302 0.908796
|
||||
0.304 0.907584
|
||||
0.306 0.906364
|
||||
0.308 0.9051359999999999
|
||||
0.31 0.9039
|
||||
0.312 0.902656
|
||||
0.314 0.901404
|
||||
0.316 0.900144
|
||||
0.318 0.898876
|
||||
0.32 0.8976
|
||||
0.322 0.896316
|
||||
0.324 0.895024
|
||||
0.326 0.893724
|
||||
0.328 0.892416
|
||||
0.33 0.8911
|
||||
0.332 0.889776
|
||||
0.334 0.888444
|
||||
0.336 0.887104
|
||||
0.338 0.885756
|
||||
0.34 0.8844
|
||||
0.342 0.8830359999999999
|
||||
0.34400000000000003 0.881664
|
||||
0.34600000000000003 0.880284
|
||||
0.34800000000000003 0.878896
|
||||
0.35000000000000003 0.8775
|
||||
0.352 0.876096
|
||||
0.354 0.874684
|
||||
0.356 0.873264
|
||||
0.358 0.871836
|
||||
0.36 0.8704000000000001
|
||||
0.362 0.8689560000000001
|
||||
0.364 0.867504
|
||||
0.366 0.866044
|
||||
0.368 0.864576
|
||||
0.37 0.8631
|
||||
0.372 0.8616159999999999
|
||||
0.374 0.860124
|
||||
0.376 0.858624
|
||||
0.378 0.857116
|
||||
0.38 0.8556
|
||||
0.382 0.8540760000000001
|
||||
0.384 0.852544
|
||||
0.386 0.851004
|
||||
0.388 0.849456
|
||||
0.39 0.8479
|
||||
0.392 0.846336
|
||||
0.394 0.844764
|
||||
0.396 0.8431839999999999
|
||||
0.398 0.841596
|
||||
0.4 0.84
|
||||
0.402 0.8383959999999999
|
||||
0.404 0.836784
|
||||
0.406 0.835164
|
||||
0.40800000000000003 0.8335359999999999
|
||||
0.41000000000000003 0.8319
|
||||
0.41200000000000003 0.830256
|
||||
0.41400000000000003 0.828604
|
||||
0.41600000000000004 0.8269439999999999
|
||||
0.418 0.825276
|
||||
0.42 0.8236
|
||||
0.422 0.821916
|
||||
0.424 0.8202240000000001
|
||||
0.426 0.818524
|
||||
0.428 0.816816
|
||||
0.43 0.8151
|
||||
0.432 0.813376
|
||||
0.434 0.811644
|
||||
0.436 0.809904
|
||||
0.438 0.808156
|
||||
0.44 0.8064
|
||||
0.442 0.804636
|
||||
0.444 0.802864
|
||||
0.446 0.801084
|
||||
0.448 0.799296
|
||||
0.45 0.7975
|
||||
0.452 0.795696
|
||||
0.454 0.793884
|
||||
0.456 0.792064
|
||||
0.458 0.7902359999999999
|
||||
0.46 0.7884
|
||||
0.462 0.786556
|
||||
0.464 0.784704
|
||||
0.466 0.782844
|
||||
0.468 0.780976
|
||||
0.47000000000000003 0.7790999999999999
|
||||
0.47200000000000003 0.7772159999999999
|
||||
0.47400000000000003 0.7753239999999999
|
||||
0.47600000000000003 0.773424
|
||||
0.47800000000000004 0.771516
|
||||
0.48 0.7696000000000001
|
||||
0.482 0.767676
|
||||
0.484 0.765744
|
||||
0.486 0.763804
|
||||
0.488 0.761856
|
||||
0.49 0.7599
|
||||
0.492 0.7579359999999999
|
||||
0.494 0.755964
|
||||
0.496 0.753984
|
||||
0.498 0.751996
|
||||
0.5 0.75
|
||||
0.502 0.747996
|
||||
0.504 0.745984
|
||||
0.506 0.7439640000000001
|
||||
0.508 0.7419359999999999
|
||||
0.51 0.7399
|
||||
0.512 0.7378560000000001
|
||||
0.514 0.735804
|
||||
0.516 0.733744
|
||||
0.518 0.731676
|
||||
0.52 0.7296
|
||||
0.522 0.727516
|
||||
0.524 0.725424
|
||||
0.526 0.723324
|
||||
0.528 0.721216
|
||||
0.53 0.7191
|
||||
0.532 0.716976
|
||||
0.534 0.714844
|
||||
0.536 0.712704
|
||||
0.538 0.710556
|
||||
0.54 0.7083999999999999
|
||||
0.542 0.706236
|
||||
0.544 0.704064
|
||||
0.546 0.701884
|
||||
0.548 0.6996959999999999
|
||||
0.55 0.6975
|
||||
0.552 0.6952959999999999
|
||||
0.554 0.6930839999999999
|
||||
0.556 0.6908639999999999
|
||||
0.558 0.6886359999999999
|
||||
0.56 0.6863999999999999
|
||||
0.562 0.684156
|
||||
0.5640000000000001 0.681904
|
||||
0.5660000000000001 0.6796439999999999
|
||||
0.5680000000000001 0.677376
|
||||
0.5700000000000001 0.6750999999999999
|
||||
0.5720000000000001 0.6728159999999999
|
||||
0.5740000000000001 0.6705239999999999
|
||||
0.5760000000000001 0.6682239999999999
|
||||
0.578 0.6659160000000001
|
||||
0.58 0.6636
|
||||
0.582 0.661276
|
||||
0.584 0.658944
|
||||
0.586 0.656604
|
||||
0.588 0.6542560000000001
|
||||
0.59 0.6519
|
||||
0.592 0.6495360000000001
|
||||
0.594 0.6471640000000001
|
||||
0.596 0.644784
|
||||
0.598 0.642396
|
||||
0.6 0.64
|
||||
0.602 0.637596
|
||||
0.604 0.635184
|
||||
0.606 0.632764
|
||||
0.608 0.630336
|
||||
0.61 0.6279
|
||||
0.612 0.625456
|
||||
0.614 0.623004
|
||||
0.616 0.620544
|
||||
0.618 0.6180760000000001
|
||||
0.62 0.6155999999999999
|
||||
0.622 0.613116
|
||||
0.624 0.6106240000000001
|
||||
0.626 0.608124
|
||||
0.628 0.6056159999999999
|
||||
0.63 0.6031
|
||||
0.632 0.600576
|
||||
0.634 0.598044
|
||||
0.636 0.595504
|
||||
0.638 0.592956
|
||||
0.64 0.5904
|
||||
0.642 0.587836
|
||||
0.644 0.585264
|
||||
0.646 0.582684
|
||||
0.648 0.580096
|
||||
0.65 0.5774999999999999
|
||||
0.652 0.574896
|
||||
0.654 0.572284
|
||||
0.656 0.569664
|
||||
0.658 0.567036
|
||||
0.66 0.5644
|
||||
0.662 0.5617559999999999
|
||||
0.664 0.5591039999999999
|
||||
0.666 0.5564439999999999
|
||||
0.668 0.5537759999999999
|
||||
0.67 0.5510999999999999
|
||||
0.672 0.548416
|
||||
0.674 0.5457239999999999
|
||||
0.676 0.543024
|
||||
0.678 0.540316
|
||||
0.68 0.5375999999999999
|
||||
0.682 0.5348759999999999
|
||||
0.684 0.532144
|
||||
0.686 0.529404
|
||||
0.6880000000000001 0.5266559999999999
|
||||
0.6900000000000001 0.5238999999999999
|
||||
0.6920000000000001 0.5211359999999999
|
||||
0.6940000000000001 0.5183639999999999
|
||||
0.6960000000000001 0.5155839999999999
|
||||
0.6980000000000001 0.5127959999999999
|
||||
0.7000000000000001 0.5099999999999999
|
||||
0.7020000000000001 0.507196
|
||||
0.704 0.504384
|
||||
0.706 0.5015640000000001
|
||||
0.708 0.49873600000000007
|
||||
0.71 0.4959
|
||||
0.712 0.49305600000000005
|
||||
0.714 0.4902040000000001
|
||||
0.716 0.487344
|
||||
0.718 0.484476
|
||||
0.72 0.48160000000000003
|
||||
0.722 0.47871600000000003
|
||||
0.724 0.475824
|
||||
0.726 0.472924
|
||||
0.728 0.470016
|
||||
0.73 0.46710000000000007
|
||||
0.732 0.46417600000000003
|
||||
0.734 0.461244
|
||||
0.736 0.45830400000000004
|
||||
0.738 0.455356
|
||||
0.74 0.4524
|
||||
0.742 0.44943600000000006
|
||||
0.744 0.44646399999999997
|
||||
0.746 0.443484
|
||||
0.748 0.440496
|
||||
0.75 0.4375
|
||||
0.752 0.434496
|
||||
0.754 0.431484
|
||||
0.756 0.42846399999999996
|
||||
0.758 0.42543600000000004
|
||||
0.76 0.4224
|
||||
0.762 0.41935599999999995
|
||||
0.764 0.416304
|
||||
0.766 0.41324399999999994
|
||||
0.768 0.410176
|
||||
0.77 0.4071
|
||||
0.772 0.40401599999999993
|
||||
0.774 0.40092399999999995
|
||||
0.776 0.39782399999999996
|
||||
0.778 0.39471599999999996
|
||||
0.78 0.39159999999999995
|
||||
0.782 0.38847599999999993
|
||||
0.784 0.3853439999999999
|
||||
0.786 0.382204
|
||||
0.788 0.37905599999999995
|
||||
0.79 0.3758999999999999
|
||||
0.792 0.37273599999999996
|
||||
0.794 0.3695639999999999
|
||||
0.796 0.36638399999999993
|
||||
0.798 0.36319599999999996
|
||||
0.8 0.3599999999999999
|
||||
0.802 0.3567959999999999
|
||||
0.804 0.3535839999999999
|
||||
0.806 0.3503639999999999
|
||||
0.808 0.3471359999999999
|
||||
0.81 0.3438999999999999
|
||||
0.812 0.34065599999999996
|
||||
0.8140000000000001 0.3374039999999999
|
||||
0.8160000000000001 0.3341439999999999
|
||||
0.8180000000000001 0.33087599999999995
|
||||
0.8200000000000001 0.3275999999999999
|
||||
0.8220000000000001 0.32431599999999994
|
||||
0.8240000000000001 0.32102399999999987
|
||||
0.8260000000000001 0.3177239999999999
|
||||
0.8280000000000001 0.3144159999999999
|
||||
0.8300000000000001 0.31109999999999993
|
||||
0.8320000000000001 0.3077759999999998
|
||||
0.834 0.30444400000000005
|
||||
0.836 0.30110400000000004
|
||||
0.838 0.297756
|
||||
0.84 0.2944000000000001
|
||||
0.842 0.2910360000000001
|
||||
0.844 0.28766400000000003
|
||||
0.846 0.2842840000000001
|
||||
0.848 0.28089600000000003
|
||||
0.85 0.2775000000000001
|
||||
0.852 0.274096
|
||||
0.854 0.27068400000000004
|
||||
0.856 0.26726400000000006
|
||||
0.858 0.26383600000000007
|
||||
0.86 0.2604000000000001
|
||||
0.862 0.2569560000000001
|
||||
0.864 0.25350400000000006
|
||||
0.866 0.25004400000000004
|
||||
0.868 0.24657600000000002
|
||||
0.87 0.24309999999999998
|
||||
0.872 0.23961600000000005
|
||||
0.874 0.236124
|
||||
0.876 0.23262400000000005
|
||||
0.878 0.229116
|
||||
0.88 0.22560000000000002
|
||||
0.882 0.22207599999999994
|
||||
0.884 0.21854399999999996
|
||||
0.886 0.21500399999999997
|
||||
0.888 0.21145599999999998
|
||||
0.89 0.20789999999999997
|
||||
0.892 0.20433599999999996
|
||||
0.894 0.20076399999999994
|
||||
0.896 0.19718399999999991
|
||||
0.898 0.193596
|
||||
0.9 0.18999999999999995
|
||||
0.902 0.186396
|
||||
0.904 0.18278399999999995
|
||||
0.906 0.179164
|
||||
0.908 0.17553599999999991
|
||||
0.91 0.17189999999999994
|
||||
0.912 0.16825599999999996
|
||||
0.914 0.16460399999999997
|
||||
0.916 0.16094399999999998
|
||||
0.918 0.15727599999999997
|
||||
0.92 0.15359999999999996
|
||||
0.922 0.14991599999999994
|
||||
0.924 0.1462239999999999
|
||||
0.926 0.14252399999999987
|
||||
0.928 0.13881599999999994
|
||||
0.93 0.1350999999999999
|
||||
0.932 0.13137599999999994
|
||||
0.934 0.12764399999999987
|
||||
0.936 0.1239039999999999
|
||||
0.9380000000000001 0.12015599999999993
|
||||
0.9400000000000001 0.11639999999999984
|
||||
0.9420000000000001 0.11263599999999985
|
||||
0.9440000000000001 0.10886399999999985
|
||||
0.9460000000000001 0.10508399999999984
|
||||
0.9480000000000001 0.10129599999999983
|
||||
0.9500000000000001 0.09749999999999992
|
||||
0.9520000000000001 0.09369599999999989
|
||||
0.9540000000000001 0.08988399999999985
|
||||
0.9560000000000001 0.08606399999999981
|
||||
0.9580000000000001 0.08223599999999986
|
||||
0.96 0.07840000000000003
|
||||
0.962 0.07455600000000007
|
||||
0.964 0.0707040000000001
|
||||
0.966 0.06684400000000001
|
||||
0.968 0.06297600000000003
|
||||
0.97 0.05910000000000004
|
||||
0.972 0.05521600000000004
|
||||
0.974 0.051324000000000036
|
||||
0.976 0.04742400000000002
|
||||
0.978 0.043516
|
||||
0.98 0.03960000000000008
|
||||
0.982 0.03567600000000004
|
||||
0.984 0.031743999999999994
|
||||
0.986 0.02780400000000005
|
||||
0.988 0.02385599999999999
|
||||
0.99 0.01990000000000003
|
||||
0.992 0.01593600000000006
|
||||
0.994 0.011963999999999975
|
||||
0.996 0.007983999999999991
|
||||
0.998 0.0039959999999999996
|
||||
1.0 0.0
|
13
resources/MutationCMA.html
Normal file
@@ -0,0 +1,13 @@
|
||||
<html>
|
||||
<head>
|
||||
<title>CMA Mutation</title>
|
||||
</head>
|
||||
<body>
|
||||
<EFBFBD>
|
||||
<h1 align="center">CMA Mutation</h1>
|
||||
<center>
|
||||
</center><br>
|
||||
Please read the JavaEvA manual for a detailed description.
|
||||
</ul>
|
||||
</body>
|
||||
</html>
|
13
resources/MutationMSRGlobal.html
Normal file
@@ -0,0 +1,13 @@
|
||||
<html>
|
||||
<head>
|
||||
<title>f_1 : Sphere function</title>
|
||||
</head>
|
||||
<body>
|
||||
<EFBFBD>
|
||||
<h1 align="center">MutationMSRGlobal</h1>
|
||||
<center>
|
||||
</center><br>
|
||||
Please read the JavaEvA manual for a detailed description.
|
||||
</ul>
|
||||
</body>
|
||||
</html>
|
15
resources/MutationMSRSeperate.html
Normal file
@@ -0,0 +1,15 @@
|
||||
<html>
|
||||
<head>
|
||||
<title>f_1 : Sphere function</title>
|
||||
</head>
|
||||
<body>
|
||||
<EFBFBD>
|
||||
<h1 align="center">MutationMSRSeperate</h1>
|
||||
<center>
|
||||
</center><br>
|
||||
<center>
|
||||
</center><br>
|
||||
Please read the JavaEvA manual for a detailed description.
|
||||
</ul>
|
||||
</body>
|
||||
</html>
|
13
resources/MutationMVA.html
Normal file
@@ -0,0 +1,13 @@
|
||||
<html>
|
||||
<head>
|
||||
<title>MVA Mutation</title>
|
||||
</head>
|
||||
<body>
|
||||
<EFBFBD>
|
||||
<h1 align="center">MVA Mutation</h1>
|
||||
<center>
|
||||
</center><br>
|
||||
Please read the JavaEvA manual for a detailed description.
|
||||
</ul>
|
||||
</body>
|
||||
</html>
|
13
resources/MutationRandom.html
Normal file
@@ -0,0 +1,13 @@
|
||||
<html>
|
||||
<head>
|
||||
<title>Random Mutation</title>
|
||||
</head>
|
||||
<body>
|
||||
<EFBFBD>
|
||||
<h1 align="center">Random Mutation</h1>
|
||||
<center>
|
||||
</center><br>
|
||||
Please read the JavaEvA manual for a detailed description.
|
||||
</ul>
|
||||
</body>
|
||||
</html>
|
13
resources/MutationSuccessRule.html
Normal file
@@ -0,0 +1,13 @@
|
||||
<html>
|
||||
<head>
|
||||
<title>Success Rule Mutation</title>
|
||||
</head>
|
||||
<body>
|
||||
<EFBFBD>
|
||||
<h1 align="center">Success Rule</h1>
|
||||
<center>
|
||||
</center><br>
|
||||
Please read the JavaEvA manual for a detailed description.
|
||||
</ul>
|
||||
</body>
|
||||
</html>
|
13
resources/NU_SVM.html
Normal file
@@ -0,0 +1,13 @@
|
||||
<html>
|
||||
<head>
|
||||
<title>NU SV-Regression</title>
|
||||
</head>
|
||||
<body>
|
||||
<EFBFBD>
|
||||
<h1 align="center">NU SV-Regression</h1>
|
||||
<center>
|
||||
</center><br>
|
||||
Please read the JavaEvA manual for a detailed description.
|
||||
</ul>
|
||||
</body>
|
||||
</html>
|
23
resources/ParticleSwarmOptimization.html
Normal file
@@ -0,0 +1,23 @@
|
||||
<html>
|
||||
<head>
|
||||
<title>Particle Swarm Optimization - PSO</title>
|
||||
</head>
|
||||
<body>
|
||||
<h1 align="center">Particle Swarm Optimization - PSO</h1>
|
||||
<center>
|
||||
</center><br>
|
||||
The Particle Swarm Optimization by Kennedy and Eberhardt is inspired by swarm intelligent
|
||||
behaviour seen in animals like birds or ants. A swarm of particles is a set of individual agents
|
||||
"flying" across the search space with individual velocity vectors. There is no selection as in
|
||||
classic Evolutionary Algorithms. Instead, the individuals exchange knowledge about the space they
|
||||
have come across. Each one is attracted to the best position the individual has seen so far (cognitive
|
||||
component) and to the best position known by its neighbors (social component).<br>
|
||||
The neighborhood is defined by the swarm velocity, which may be a linear ordering, a grid and some others.
|
||||
The influence of the velocity of the last time-step is taken into account using an inertness/
|
||||
constriction parameter, which controls the convergence behaviour of the swarm.
|
||||
The influence of social and cognitive attraction are weighed using the <i>phi</i> parameters. In the
|
||||
constriction variant there is a dependence enforced between constriction and the phi, making sure that
|
||||
the swarm converges slowly but steadily, see the publications of Clerc, e.g. <br>
|
||||
|
||||
</body>
|
||||
</html>
|
13
resources/Poly.html
Normal file
@@ -0,0 +1,13 @@
|
||||
<html>
|
||||
<head>
|
||||
<title>Poly model</title>
|
||||
</head>
|
||||
<body>
|
||||
<EFBFBD>
|
||||
<h1 align="center">Poly model</h1>
|
||||
<center>
|
||||
</center><br>
|
||||
Please read the JavaEvA manual for a detailed description.
|
||||
</ul>
|
||||
</body>
|
||||
</html>
|
18
resources/PolyRBFJama.html
Normal file
@@ -0,0 +1,18 @@
|
||||
<html>
|
||||
<head>
|
||||
<title>f_1 : Sphere function</title>
|
||||
</head>
|
||||
<body>
|
||||
<EFBFBD>
|
||||
<h1 align="center">PolyRBFJama</h1>
|
||||
<center>
|
||||
</center><br>
|
||||
ESPara contains the information describing the Evolution Strategy:
|
||||
<ul>
|
||||
<li>The problem to be solved.</li>
|
||||
<li>A seed value for the random number genarator.</li>
|
||||
<li>A termination criterium for the algorithm.</li>
|
||||
<li>The used population.</li>
|
||||
</ul>
|
||||
</body>
|
||||
</html>
|
13
resources/RBF.html
Normal file
@@ -0,0 +1,13 @@
|
||||
<html>
|
||||
<head>
|
||||
<title>RBF model</title>
|
||||
</head>
|
||||
<body>
|
||||
<EFBFBD>
|
||||
<h1 align="center">RBF model</h1>
|
||||
<center>
|
||||
</center><br>
|
||||
Please read the JavaEvA manual for a detailed description.
|
||||
</ul>
|
||||
</body>
|
||||
</html>
|
17
resources/StatisticsParameterImpl.html
Normal file
@@ -0,0 +1,17 @@
|
||||
<html>
|
||||
<head>
|
||||
<title>Statistics Parameter Panel</title>
|
||||
</head>
|
||||
<body>
|
||||
<EFBFBD>
|
||||
<h1 align="center">Statistics Parameter Panel</h1>
|
||||
<center>
|
||||
</center><br>
|
||||
Here you can edit the :
|
||||
<ul>
|
||||
<li>Number of statistical independent runs.</li>
|
||||
<li>Name of result file.</li>
|
||||
<li>Plot fitness of best, worse or both individuals.</li>
|
||||
</ul>
|
||||
</body>
|
||||
</html>
|
22
resources/Tribes.html
Normal file
@@ -0,0 +1,22 @@
|
||||
<html>
|
||||
<head>
|
||||
<title>TRIBES</title>
|
||||
</head>
|
||||
<body>
|
||||
<h1 align="center">TRIBES</h1>
|
||||
<center>
|
||||
</center><br>
|
||||
TRIBES is a parameter-free PSO implementation by Maurice Clerc. It combines several adaptive
|
||||
mechanisms to achieve good performance in different domains. It uses a dynamic number of particles,
|
||||
starting usually with 3 and adding new ones during optimization. Therefore, the number of generations
|
||||
is not directly connected to the number of fitness calls,
|
||||
because the population may grow (and seldomly shrink).<br>
|
||||
|
||||
Also, there are different initialization
|
||||
methods implemented which are chosen randomly when particles are created. The particles are organized
|
||||
in loosely connected groups or tribes (therefore the name), creating a kind of small-world topology.
|
||||
<br>
|
||||
As TRIBES uses an error approximation to steer the adaptations, a target value should be given, so far in the first
|
||||
dimension only.
|
||||
</body>
|
||||
</html>
|
BIN
resources/images/Add24.gif
Normal file
After Width: | Height: | Size: 962 B |
BIN
resources/images/Export24.gif
Normal file
After Width: | Height: | Size: 473 B |
BIN
resources/images/Import24.gif
Normal file
After Width: | Height: | Size: 473 B |
BIN
resources/images/Information24.gif
Normal file
After Width: | Height: | Size: 1.3 KiB |
BIN
resources/images/JavaEvAIcon.gif
Normal file
After Width: | Height: | Size: 937 B |
BIN
resources/images/JavaEvAIcon_2.gif
Normal file
After Width: | Height: | Size: 959 B |
BIN
resources/images/JavaEvAIcon_3.gif
Normal file
After Width: | Height: | Size: 1010 B |
BIN
resources/images/JavaEvaSplashScreen.png
Normal file
After Width: | Height: | Size: 26 KiB |
BIN
resources/images/Play24.gif
Normal file
After Width: | Height: | Size: 247 B |
BIN
resources/images/QueenB.gif
Normal file
After Width: | Height: | Size: 979 B |
BIN
resources/images/QueenW.gif
Normal file
After Width: | Height: | Size: 978 B |
BIN
resources/images/Refresh24.gif
Normal file
After Width: | Height: | Size: 316 B |
BIN
resources/images/Stop24.gif
Normal file
After Width: | Height: | Size: 313 B |
BIN
resources/images/Sub24.gif
Normal file
After Width: | Height: | Size: 908 B |
BIN
resources/images/ackley.jpg
Normal file
After Width: | Height: | Size: 30 KiB |
BIN
resources/images/ackleyopt.jpg
Normal file
After Width: | Height: | Size: 41 KiB |
BIN
resources/images/ackleytex.jpg
Normal file
After Width: | Height: | Size: 19 KiB |
BIN
resources/images/f1.jpg
Normal file
After Width: | Height: | Size: 35 KiB |
BIN
resources/images/f1tex.jpg
Normal file
After Width: | Height: | Size: 3.2 KiB |
BIN
resources/images/f2.jpg
Normal file
After Width: | Height: | Size: 37 KiB |
BIN
resources/images/f2tex.jpg
Normal file
After Width: | Height: | Size: 3.6 KiB |
BIN
resources/images/f81.jpg
Normal file
After Width: | Height: | Size: 42 KiB |
BIN
resources/images/f85.jpg
Normal file
After Width: | Height: | Size: 38 KiB |
BIN
resources/images/grie100.jpg
Normal file
After Width: | Height: | Size: 31 KiB |
BIN
resources/images/rastrigin1.jpg
Normal file
After Width: | Height: | Size: 37 KiB |
BIN
resources/images/rastrigin20.jpg
Normal file
After Width: | Height: | Size: 44 KiB |
BIN
resources/images/rastrigin5.jpg
Normal file
After Width: | Height: | Size: 40 KiB |
BIN
resources/images/rastrigintex.jpg
Normal file
After Width: | Height: | Size: 8.8 KiB |
BIN
resources/images/rosenbrocktex.jpg
Normal file
After Width: | Height: | Size: 6.5 KiB |
BIN
resources/images/schwefelsymmetrie.jpg
Normal file
After Width: | Height: | Size: 13 KiB |
BIN
resources/images/step5.jpg
Normal file
After Width: | Height: | Size: 42 KiB |
BIN
resources/images/stepopt.jpg
Normal file
After Width: | Height: | Size: 42 KiB |
BIN
resources/images/steptex.jpg
Normal file
After Width: | Height: | Size: 4.9 KiB |
13
resources/rvm.html
Normal file
@@ -0,0 +1,13 @@
|
||||
<html>
|
||||
<head>
|
||||
<title>RVM model</title>
|
||||
</head>
|
||||
<body>
|
||||
<EFBFBD>
|
||||
<h1 align="center">RVM model</h1>
|
||||
<center>
|
||||
</center><br>
|
||||
Please read the JavaEvA manual for a detailed description.
|
||||
</ul>
|
||||
</body>
|
||||
</html>
|