Importing release version 322 from old repos
This commit is contained in:
182
src/wsi/ra/math/Jama/CholeskyDecomposition.java
Normal file
182
src/wsi/ra/math/Jama/CholeskyDecomposition.java
Normal file
@@ -0,0 +1,182 @@
|
||||
package wsi.ra.math.Jama;
|
||||
|
||||
/** Cholesky Decomposition.
|
||||
<P>
|
||||
For a symmetric, positive definite matrix A, the Cholesky decomposition
|
||||
is an lower triangular matrix L so that A = L*L'.
|
||||
<P>
|
||||
If the matrix is not symmetric or positive definite, the constructor
|
||||
returns a partial decomposition and sets an internal flag that may
|
||||
be queried by the isSPD() method.
|
||||
*/
|
||||
|
||||
public class CholeskyDecomposition implements java.io.Serializable {
|
||||
|
||||
/* ------------------------
|
||||
Class variables
|
||||
* ------------------------ */
|
||||
|
||||
/** Array for internal storage of decomposition.
|
||||
@serial internal array storage.
|
||||
*/
|
||||
private double[][] L;
|
||||
|
||||
/** Row and column dimension (square matrix).
|
||||
@serial matrix dimension.
|
||||
*/
|
||||
private int n;
|
||||
|
||||
/** Symmetric and positive definite flag.
|
||||
@serial is symmetric and positive definite flag.
|
||||
*/
|
||||
private boolean isspd;
|
||||
|
||||
/* ------------------------
|
||||
Constructor
|
||||
* ------------------------ */
|
||||
|
||||
/** Cholesky algorithm for symmetric and positive definite matrix.
|
||||
@param A Square, symmetric matrix.
|
||||
@return Structure to access L and isspd flag.
|
||||
*/
|
||||
|
||||
public CholeskyDecomposition (Matrix Arg) {
|
||||
// Initialize.
|
||||
double[][] A = Arg.getArray();
|
||||
n = Arg.getRowDimension();
|
||||
L = new double[n][n];
|
||||
isspd = (Arg.getColumnDimension() == n);
|
||||
// Main loop.
|
||||
for (int j = 0; j < n; j++) {
|
||||
double[] Lrowj = L[j];
|
||||
double d = 0.0;
|
||||
for (int k = 0; k < j; k++) {
|
||||
double[] Lrowk = L[k];
|
||||
double s = 0.0;
|
||||
for (int i = 0; i < k; i++) {
|
||||
s += Lrowk[i]*Lrowj[i];
|
||||
}
|
||||
Lrowj[k] = s = (A[j][k] - s)/L[k][k];
|
||||
d = d + s*s;
|
||||
isspd = isspd & (A[k][j] == A[j][k]);
|
||||
}
|
||||
d = A[j][j] - d;
|
||||
isspd = isspd & (d > 0.0);
|
||||
L[j][j] = Math.sqrt(Math.max(d,0.0));
|
||||
for (int k = j+1; k < n; k++) {
|
||||
L[j][k] = 0.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
// \** Right Triangular Cholesky Decomposition.
|
||||
// <P>
|
||||
// For a symmetric, positive definite matrix A, the Right Cholesky
|
||||
// decomposition is an upper triangular matrix R so that A = R'*R.
|
||||
// This constructor computes R with the Fortran inspired column oriented
|
||||
// algorithm used in LINPACK and MATLAB. In Java, we suspect a row oriented,
|
||||
// lower triangular decomposition is faster. We have temporarily included
|
||||
// this constructor here until timing experiments confirm this suspicion.
|
||||
// *\
|
||||
|
||||
|
||||
private transient double[][] R;
|
||||
|
||||
|
||||
|
||||
public CholeskyDecomposition (Matrix Arg, int rightflag) {
|
||||
// Initialize.
|
||||
double[][] A = Arg.getArray();
|
||||
n = Arg.getColumnDimension();
|
||||
R = new double[n][n];
|
||||
isspd = (Arg.getColumnDimension() == n);
|
||||
// Main loop.
|
||||
for (int j = 0; j < n; j++) {
|
||||
double d = 0.0;
|
||||
for (int k = 0; k < j; k++) {
|
||||
double s = A[k][j];
|
||||
for (int i = 0; i < k; i++) {
|
||||
s = s - R[i][k]*R[i][j];
|
||||
}
|
||||
R[k][j] = s = s/R[k][k];
|
||||
d = d + s*s;
|
||||
isspd = isspd & (A[k][j] == A[j][k]);
|
||||
}
|
||||
d = A[j][j] - d;
|
||||
isspd = isspd & (d > 0.0);
|
||||
R[j][j] = Math.sqrt(Math.max(d,0.0));
|
||||
for (int k = j+1; k < n; k++) {
|
||||
R[k][j] = 0.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
public Matrix getR () {
|
||||
return new Matrix(R,n,n);
|
||||
}
|
||||
|
||||
|
||||
/** Is the matrix symmetric and positive definite?
|
||||
@return true if A is symmetric and positive definite.
|
||||
*/
|
||||
|
||||
public boolean isSPD () {
|
||||
return isspd;
|
||||
}
|
||||
|
||||
/** Return triangular factor.
|
||||
@return L
|
||||
*/
|
||||
|
||||
public Matrix getL () {
|
||||
return new Matrix(L,n,n);
|
||||
}
|
||||
|
||||
/** Solve A*X = B
|
||||
@param B A Matrix with as many rows as A and any number of columns.
|
||||
@return X so that L*L'*X = B
|
||||
@exception IllegalArgumentException Matrix row dimensions must agree.
|
||||
@exception RuntimeException Matrix is not symmetric positive definite.
|
||||
*/
|
||||
|
||||
public Matrix solve (Matrix B) {
|
||||
if (B.getRowDimension() != n) {
|
||||
throw new IllegalArgumentException("Matrix row dimensions must agree.");
|
||||
}
|
||||
if (!isspd) {
|
||||
throw new RuntimeException("Matrix is not symmetric positive definite.");
|
||||
}
|
||||
|
||||
// Copy right hand side.
|
||||
double[][] X = B.getArrayCopy();
|
||||
int nx = B.getColumnDimension();
|
||||
|
||||
// Solve L*Y = B;
|
||||
for (int k = 0; k < n; k++) {
|
||||
for (int i = k+1; i < n; i++) {
|
||||
for (int j = 0; j < nx; j++) {
|
||||
X[i][j] -= X[k][j]*L[i][k];
|
||||
}
|
||||
}
|
||||
for (int j = 0; j < nx; j++) {
|
||||
X[k][j] /= L[k][k];
|
||||
}
|
||||
}
|
||||
|
||||
// Solve L'*X = Y;
|
||||
for (int k = n-1; k >= 0; k--) {
|
||||
for (int j = 0; j < nx; j++) {
|
||||
X[k][j] /= L[k][k];
|
||||
}
|
||||
for (int i = 0; i < k; i++) {
|
||||
for (int j = 0; j < nx; j++) {
|
||||
X[i][j] -= X[k][j]*L[k][i];
|
||||
}
|
||||
}
|
||||
}
|
||||
return new Matrix(X,n,nx);
|
||||
}
|
||||
}
|
956
src/wsi/ra/math/Jama/EigenvalueDecomposition.java
Normal file
956
src/wsi/ra/math/Jama/EigenvalueDecomposition.java
Normal file
@@ -0,0 +1,956 @@
|
||||
package wsi.ra.math.Jama;
|
||||
import wsi.ra.math.Jama.util.Maths;
|
||||
|
||||
|
||||
/** Eigenvalues and eigenvectors of a real matrix.
|
||||
<P>
|
||||
If A is symmetric, then A = V*D*V' where the eigenvalue matrix D is
|
||||
diagonal and the eigenvector matrix V is orthogonal.
|
||||
I.e. A = V.times(D.times(V.transpose())) and
|
||||
V.times(V.transpose()) equals the identiCty matrix.
|
||||
<P>
|
||||
If A is not symmetric, then the eigenvalue matrix D is block diagonal
|
||||
with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues,
|
||||
lambda + i*mu, in 2-by-2 blocks, [lambda, mu; -mu, lambda]. The
|
||||
columns of V represent the eigenvectors in the sense that A*V = V*D,
|
||||
i.e. A.times(V) equals V.times(D). The matrix V may be badly
|
||||
conditioned, or even singular, so the validity of the equation
|
||||
A = V*D*inverse(V) depends upon V.cond().
|
||||
**/
|
||||
|
||||
public class EigenvalueDecomposition implements java.io.Serializable {
|
||||
|
||||
/* ------------------------
|
||||
Class variables
|
||||
* ------------------------ */
|
||||
|
||||
/** Row and column dimension (square matrix).
|
||||
@serial matrix dimension.
|
||||
*/
|
||||
private int n;
|
||||
|
||||
/** Symmetry flag.
|
||||
@serial internal symmetry flag.
|
||||
*/
|
||||
private boolean issymmetric;
|
||||
|
||||
/** Arrays for internal storage of eigenvalues.
|
||||
@serial internal storage of eigenvalues.
|
||||
*/
|
||||
private double[] d, e;
|
||||
|
||||
/** Array for internal storage of eigenvectors.
|
||||
@serial internal storage of eigenvectors.
|
||||
*/
|
||||
private double[][] V;
|
||||
|
||||
/** Array for internal storage of nonsymmetric Hessenberg form.
|
||||
@serial internal storage of nonsymmetric Hessenberg form.
|
||||
*/
|
||||
private double[][] H;
|
||||
|
||||
/** Working storage for nonsymmetric algorithm.
|
||||
@serial working storage for nonsymmetric algorithm.
|
||||
*/
|
||||
private double[] ort;
|
||||
|
||||
/* ------------------------
|
||||
Private Methods
|
||||
* ------------------------ */
|
||||
|
||||
// Symmetric Householder reduction to tridiagonal form.
|
||||
|
||||
private void tred2 () {
|
||||
|
||||
// This is derived from the Algol procedures tred2 by
|
||||
// Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
|
||||
// Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
|
||||
// Fortran subroutine in EISPACK.
|
||||
|
||||
for (int j = 0; j < n; j++) {
|
||||
d[j] = V[n-1][j];
|
||||
}
|
||||
|
||||
// Householder reduction to tridiagonal form.
|
||||
|
||||
for (int i = n-1; i > 0; i--) {
|
||||
|
||||
// Scale to avoid under/overflow.
|
||||
|
||||
double scale = 0.0;
|
||||
double h = 0.0;
|
||||
for (int k = 0; k < i; k++) {
|
||||
scale = scale + Math.abs(d[k]);
|
||||
}
|
||||
if (scale == 0.0) {
|
||||
e[i] = d[i-1];
|
||||
for (int j = 0; j < i; j++) {
|
||||
d[j] = V[i-1][j];
|
||||
V[i][j] = 0.0;
|
||||
V[j][i] = 0.0;
|
||||
}
|
||||
} else {
|
||||
|
||||
// Generate Householder vector.
|
||||
|
||||
for (int k = 0; k < i; k++) {
|
||||
d[k] /= scale;
|
||||
h += d[k] * d[k];
|
||||
}
|
||||
double f = d[i-1];
|
||||
double g = Math.sqrt(h);
|
||||
if (f > 0) {
|
||||
g = -g;
|
||||
}
|
||||
e[i] = scale * g;
|
||||
h = h - f * g;
|
||||
d[i-1] = f - g;
|
||||
for (int j = 0; j < i; j++) {
|
||||
e[j] = 0.0;
|
||||
}
|
||||
|
||||
// Apply similarity transformation to remaining columns.
|
||||
|
||||
for (int j = 0; j < i; j++) {
|
||||
f = d[j];
|
||||
V[j][i] = f;
|
||||
g = e[j] + V[j][j] * f;
|
||||
for (int k = j+1; k <= i-1; k++) {
|
||||
g += V[k][j] * d[k];
|
||||
e[k] += V[k][j] * f;
|
||||
}
|
||||
e[j] = g;
|
||||
}
|
||||
f = 0.0;
|
||||
for (int j = 0; j < i; j++) {
|
||||
e[j] /= h;
|
||||
f += e[j] * d[j];
|
||||
}
|
||||
double hh = f / (h + h);
|
||||
for (int j = 0; j < i; j++) {
|
||||
e[j] -= hh * d[j];
|
||||
}
|
||||
for (int j = 0; j < i; j++) {
|
||||
f = d[j];
|
||||
g = e[j];
|
||||
for (int k = j; k <= i-1; k++) {
|
||||
V[k][j] -= (f * e[k] + g * d[k]);
|
||||
}
|
||||
d[j] = V[i-1][j];
|
||||
V[i][j] = 0.0;
|
||||
}
|
||||
}
|
||||
d[i] = h;
|
||||
}
|
||||
|
||||
// Accumulate transformations.
|
||||
|
||||
for (int i = 0; i < n-1; i++) {
|
||||
V[n-1][i] = V[i][i];
|
||||
V[i][i] = 1.0;
|
||||
double h = d[i+1];
|
||||
if (h != 0.0) {
|
||||
for (int k = 0; k <= i; k++) {
|
||||
d[k] = V[k][i+1] / h;
|
||||
}
|
||||
for (int j = 0; j <= i; j++) {
|
||||
double g = 0.0;
|
||||
for (int k = 0; k <= i; k++) {
|
||||
g += V[k][i+1] * V[k][j];
|
||||
}
|
||||
for (int k = 0; k <= i; k++) {
|
||||
V[k][j] -= g * d[k];
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int k = 0; k <= i; k++) {
|
||||
V[k][i+1] = 0.0;
|
||||
}
|
||||
}
|
||||
for (int j = 0; j < n; j++) {
|
||||
d[j] = V[n-1][j];
|
||||
V[n-1][j] = 0.0;
|
||||
}
|
||||
V[n-1][n-1] = 1.0;
|
||||
e[0] = 0.0;
|
||||
}
|
||||
|
||||
// Symmetric tridiagonal QL algorithm.
|
||||
|
||||
private void tql2 () {
|
||||
|
||||
// This is derived from the Algol procedures tql2, by
|
||||
// Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
|
||||
// Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
|
||||
// Fortran subroutine in EISPACK.
|
||||
|
||||
for (int i = 1; i < n; i++) {
|
||||
e[i-1] = e[i];
|
||||
}
|
||||
e[n-1] = 0.0;
|
||||
|
||||
double f = 0.0;
|
||||
double tst1 = 0.0;
|
||||
double eps = Math.pow(2.0,-52.0);
|
||||
for (int l = 0; l < n; l++) {
|
||||
|
||||
// Find small subdiagonal element
|
||||
|
||||
tst1 = Math.max(tst1,Math.abs(d[l]) + Math.abs(e[l]));
|
||||
int m = l;
|
||||
while (m < n) {
|
||||
if (Math.abs(e[m]) <= eps*tst1) {
|
||||
break;
|
||||
}
|
||||
m++;
|
||||
}
|
||||
|
||||
// If m == l, d[l] is an eigenvalue,
|
||||
// otherwise, iterate.
|
||||
|
||||
if (m > l) {
|
||||
int iter = 0;
|
||||
do {
|
||||
iter = iter + 1; // (Could check iteration count here.)
|
||||
|
||||
// Compute implicit shift
|
||||
|
||||
double g = d[l];
|
||||
double p = (d[l+1] - g) / (2.0 * e[l]);
|
||||
double r = Maths.hypot(p,1.0);
|
||||
if (p < 0) {
|
||||
r = -r;
|
||||
}
|
||||
d[l] = e[l] / (p + r);
|
||||
d[l+1] = e[l] * (p + r);
|
||||
double dl1 = d[l+1];
|
||||
double h = g - d[l];
|
||||
for (int i = l+2; i < n; i++) {
|
||||
d[i] -= h;
|
||||
}
|
||||
f = f + h;
|
||||
|
||||
// Implicit QL transformation.
|
||||
|
||||
p = d[m];
|
||||
double c = 1.0;
|
||||
double c2 = c;
|
||||
double c3 = c;
|
||||
double el1 = e[l+1];
|
||||
double s = 0.0;
|
||||
double s2 = 0.0;
|
||||
for (int i = m-1; i >= l; i--) {
|
||||
c3 = c2;
|
||||
c2 = c;
|
||||
s2 = s;
|
||||
g = c * e[i];
|
||||
h = c * p;
|
||||
r = Maths.hypot(p,e[i]);
|
||||
e[i+1] = s * r;
|
||||
s = e[i] / r;
|
||||
c = p / r;
|
||||
p = c * d[i] - s * g;
|
||||
d[i+1] = h + s * (c * g + s * d[i]);
|
||||
|
||||
// Accumulate transformation.
|
||||
|
||||
for (int k = 0; k < n; k++) {
|
||||
h = V[k][i+1];
|
||||
V[k][i+1] = s * V[k][i] + c * h;
|
||||
V[k][i] = c * V[k][i] - s * h;
|
||||
}
|
||||
}
|
||||
p = -s * s2 * c3 * el1 * e[l] / dl1;
|
||||
e[l] = s * p;
|
||||
d[l] = c * p;
|
||||
|
||||
// Check for convergence.
|
||||
|
||||
} while (Math.abs(e[l]) > eps*tst1);
|
||||
}
|
||||
d[l] = d[l] + f;
|
||||
e[l] = 0.0;
|
||||
}
|
||||
|
||||
// Sort eigenvalues and corresponding vectors.
|
||||
|
||||
for (int i = 0; i < n-1; i++) {
|
||||
int k = i;
|
||||
double p = d[i];
|
||||
for (int j = i+1; j < n; j++) {
|
||||
if (d[j] < p) {
|
||||
k = j;
|
||||
p = d[j];
|
||||
}
|
||||
}
|
||||
if (k != i) {
|
||||
d[k] = d[i];
|
||||
d[i] = p;
|
||||
for (int j = 0; j < n; j++) {
|
||||
p = V[j][i];
|
||||
V[j][i] = V[j][k];
|
||||
V[j][k] = p;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Nonsymmetric reduction to Hessenberg form.
|
||||
|
||||
private void orthes () {
|
||||
|
||||
// This is derived from the Algol procedures orthes and ortran,
|
||||
// by Martin and Wilkinson, Handbook for Auto. Comp.,
|
||||
// Vol.ii-Linear Algebra, and the corresponding
|
||||
// Fortran subroutines in EISPACK.
|
||||
|
||||
int low = 0;
|
||||
int high = n-1;
|
||||
|
||||
for (int m = low+1; m <= high-1; m++) {
|
||||
|
||||
// Scale column.
|
||||
|
||||
double scale = 0.0;
|
||||
for (int i = m; i <= high; i++) {
|
||||
scale = scale + Math.abs(H[i][m-1]);
|
||||
}
|
||||
if (scale != 0.0) {
|
||||
|
||||
// Compute Householder transformation.
|
||||
|
||||
double h = 0.0;
|
||||
for (int i = high; i >= m; i--) {
|
||||
ort[i] = H[i][m-1]/scale;
|
||||
h += ort[i] * ort[i];
|
||||
}
|
||||
double g = Math.sqrt(h);
|
||||
if (ort[m] > 0) {
|
||||
g = -g;
|
||||
}
|
||||
h = h - ort[m] * g;
|
||||
ort[m] = ort[m] - g;
|
||||
|
||||
// Apply Householder similarity transformation
|
||||
// H = (I-u*u'/h)*H*(I-u*u')/h)
|
||||
|
||||
for (int j = m; j < n; j++) {
|
||||
double f = 0.0;
|
||||
for (int i = high; i >= m; i--) {
|
||||
f += ort[i]*H[i][j];
|
||||
}
|
||||
f = f/h;
|
||||
for (int i = m; i <= high; i++) {
|
||||
H[i][j] -= f*ort[i];
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 0; i <= high; i++) {
|
||||
double f = 0.0;
|
||||
for (int j = high; j >= m; j--) {
|
||||
f += ort[j]*H[i][j];
|
||||
}
|
||||
f = f/h;
|
||||
for (int j = m; j <= high; j++) {
|
||||
H[i][j] -= f*ort[j];
|
||||
}
|
||||
}
|
||||
ort[m] = scale*ort[m];
|
||||
H[m][m-1] = scale*g;
|
||||
}
|
||||
}
|
||||
|
||||
// Accumulate transformations (Algol's ortran).
|
||||
|
||||
for (int i = 0; i < n; i++) {
|
||||
for (int j = 0; j < n; j++) {
|
||||
V[i][j] = (i == j ? 1.0 : 0.0);
|
||||
}
|
||||
}
|
||||
|
||||
for (int m = high-1; m >= low+1; m--) {
|
||||
if (H[m][m-1] != 0.0) {
|
||||
for (int i = m+1; i <= high; i++) {
|
||||
ort[i] = H[i][m-1];
|
||||
}
|
||||
for (int j = m; j <= high; j++) {
|
||||
double g = 0.0;
|
||||
for (int i = m; i <= high; i++) {
|
||||
g += ort[i] * V[i][j];
|
||||
}
|
||||
// Double division avoids possible underflow
|
||||
g = (g / ort[m]) / H[m][m-1];
|
||||
for (int i = m; i <= high; i++) {
|
||||
V[i][j] += g * ort[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Complex scalar division.
|
||||
|
||||
private transient double cdivr, cdivi;
|
||||
private void cdiv(double xr, double xi, double yr, double yi) {
|
||||
double r,d;
|
||||
if (Math.abs(yr) > Math.abs(yi)) {
|
||||
r = yi/yr;
|
||||
d = yr + r*yi;
|
||||
cdivr = (xr + r*xi)/d;
|
||||
cdivi = (xi - r*xr)/d;
|
||||
} else {
|
||||
r = yr/yi;
|
||||
d = yi + r*yr;
|
||||
cdivr = (r*xr + xi)/d;
|
||||
cdivi = (r*xi - xr)/d;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Nonsymmetric reduction from Hessenberg to real Schur form.
|
||||
|
||||
private void hqr2 () {
|
||||
|
||||
// This is derived from the Algol procedure hqr2,
|
||||
// by Martin and Wilkinson, Handbook for Auto. Comp.,
|
||||
// Vol.ii-Linear Algebra, and the corresponding
|
||||
// Fortran subroutine in EISPACK.
|
||||
|
||||
// Initialize
|
||||
|
||||
int nn = this.n;
|
||||
int n = nn-1;
|
||||
int low = 0;
|
||||
int high = nn-1;
|
||||
double eps = Math.pow(2.0,-52.0);
|
||||
double exshift = 0.0;
|
||||
double p=0,q=0,r=0,s=0,z=0,t,w,x,y;
|
||||
|
||||
// Store roots isolated by balanc and compute matrix norm
|
||||
|
||||
double norm = 0.0;
|
||||
for (int i = 0; i < nn; i++) {
|
||||
if (i < low | i > high) {
|
||||
d[i] = H[i][i];
|
||||
e[i] = 0.0;
|
||||
}
|
||||
for (int j = Math.max(i-1,0); j < nn; j++) {
|
||||
norm = norm + Math.abs(H[i][j]);
|
||||
}
|
||||
}
|
||||
|
||||
// Outer loop over eigenvalue index
|
||||
|
||||
int iter = 0;
|
||||
while (n >= low) {
|
||||
|
||||
// Look for single small sub-diagonal element
|
||||
|
||||
int l = n;
|
||||
while (l > low) {
|
||||
s = Math.abs(H[l-1][l-1]) + Math.abs(H[l][l]);
|
||||
if (s == 0.0) {
|
||||
s = norm;
|
||||
}
|
||||
if (Math.abs(H[l][l-1]) < eps * s) {
|
||||
break;
|
||||
}
|
||||
l--;
|
||||
}
|
||||
|
||||
// Check for convergence
|
||||
// One root found
|
||||
|
||||
if (l == n) {
|
||||
H[n][n] = H[n][n] + exshift;
|
||||
d[n] = H[n][n];
|
||||
e[n] = 0.0;
|
||||
n--;
|
||||
iter = 0;
|
||||
|
||||
// Two roots found
|
||||
|
||||
} else if (l == n-1) {
|
||||
w = H[n][n-1] * H[n-1][n];
|
||||
p = (H[n-1][n-1] - H[n][n]) / 2.0;
|
||||
q = p * p + w;
|
||||
z = Math.sqrt(Math.abs(q));
|
||||
H[n][n] = H[n][n] + exshift;
|
||||
H[n-1][n-1] = H[n-1][n-1] + exshift;
|
||||
x = H[n][n];
|
||||
|
||||
// Real pair
|
||||
|
||||
if (q >= 0) {
|
||||
if (p >= 0) {
|
||||
z = p + z;
|
||||
} else {
|
||||
z = p - z;
|
||||
}
|
||||
d[n-1] = x + z;
|
||||
d[n] = d[n-1];
|
||||
if (z != 0.0) {
|
||||
d[n] = x - w / z;
|
||||
}
|
||||
e[n-1] = 0.0;
|
||||
e[n] = 0.0;
|
||||
x = H[n][n-1];
|
||||
s = Math.abs(x) + Math.abs(z);
|
||||
p = x / s;
|
||||
q = z / s;
|
||||
r = Math.sqrt(p * p+q * q);
|
||||
p = p / r;
|
||||
q = q / r;
|
||||
|
||||
// Row modification
|
||||
|
||||
for (int j = n-1; j < nn; j++) {
|
||||
z = H[n-1][j];
|
||||
H[n-1][j] = q * z + p * H[n][j];
|
||||
H[n][j] = q * H[n][j] - p * z;
|
||||
}
|
||||
|
||||
// Column modification
|
||||
|
||||
for (int i = 0; i <= n; i++) {
|
||||
z = H[i][n-1];
|
||||
H[i][n-1] = q * z + p * H[i][n];
|
||||
H[i][n] = q * H[i][n] - p * z;
|
||||
}
|
||||
|
||||
// Accumulate transformations
|
||||
|
||||
for (int i = low; i <= high; i++) {
|
||||
z = V[i][n-1];
|
||||
V[i][n-1] = q * z + p * V[i][n];
|
||||
V[i][n] = q * V[i][n] - p * z;
|
||||
}
|
||||
|
||||
// Complex pair
|
||||
|
||||
} else {
|
||||
d[n-1] = x + p;
|
||||
d[n] = x + p;
|
||||
e[n-1] = z;
|
||||
e[n] = -z;
|
||||
}
|
||||
n = n - 2;
|
||||
iter = 0;
|
||||
|
||||
// No convergence yet
|
||||
|
||||
} else {
|
||||
|
||||
// Form shift
|
||||
|
||||
x = H[n][n];
|
||||
y = 0.0;
|
||||
w = 0.0;
|
||||
if (l < n) {
|
||||
y = H[n-1][n-1];
|
||||
w = H[n][n-1] * H[n-1][n];
|
||||
}
|
||||
|
||||
// Wilkinson's original ad hoc shift
|
||||
|
||||
if (iter == 10) {
|
||||
exshift += x;
|
||||
for (int i = low; i <= n; i++) {
|
||||
H[i][i] -= x;
|
||||
}
|
||||
s = Math.abs(H[n][n-1]) + Math.abs(H[n-1][n-2]);
|
||||
x = y = 0.75 * s;
|
||||
w = -0.4375 * s * s;
|
||||
}
|
||||
|
||||
// MATLAB's new ad hoc shift
|
||||
|
||||
if (iter == 30) {
|
||||
s = (y - x) / 2.0;
|
||||
s = s * s + w;
|
||||
if (s > 0) {
|
||||
s = Math.sqrt(s);
|
||||
if (y < x) {
|
||||
s = -s;
|
||||
}
|
||||
s = x - w / ((y - x) / 2.0 + s);
|
||||
for (int i = low; i <= n; i++) {
|
||||
H[i][i] -= s;
|
||||
}
|
||||
exshift += s;
|
||||
x = y = w = 0.964;
|
||||
}
|
||||
}
|
||||
|
||||
iter = iter + 1; // (Could check iteration count here.)
|
||||
|
||||
// Look for two consecutive small sub-diagonal elements
|
||||
|
||||
int m = n-2;
|
||||
while (m >= l) {
|
||||
z = H[m][m];
|
||||
r = x - z;
|
||||
s = y - z;
|
||||
p = (r * s - w) / H[m+1][m] + H[m][m+1];
|
||||
q = H[m+1][m+1] - z - r - s;
|
||||
r = H[m+2][m+1];
|
||||
s = Math.abs(p) + Math.abs(q) + Math.abs(r);
|
||||
p = p / s;
|
||||
q = q / s;
|
||||
r = r / s;
|
||||
if (m == l) {
|
||||
break;
|
||||
}
|
||||
if (Math.abs(H[m][m-1]) * (Math.abs(q) + Math.abs(r)) <
|
||||
eps * (Math.abs(p) * (Math.abs(H[m-1][m-1]) + Math.abs(z) +
|
||||
Math.abs(H[m+1][m+1])))) {
|
||||
break;
|
||||
}
|
||||
m--;
|
||||
}
|
||||
|
||||
for (int i = m+2; i <= n; i++) {
|
||||
H[i][i-2] = 0.0;
|
||||
if (i > m+2) {
|
||||
H[i][i-3] = 0.0;
|
||||
}
|
||||
}
|
||||
|
||||
// Double QR step involving rows l:n and columns m:n
|
||||
|
||||
for (int k = m; k <= n-1; k++) {
|
||||
boolean notlast = (k != n-1);
|
||||
if (k != m) {
|
||||
p = H[k][k-1];
|
||||
q = H[k+1][k-1];
|
||||
r = (notlast ? H[k+2][k-1] : 0.0);
|
||||
x = Math.abs(p) + Math.abs(q) + Math.abs(r);
|
||||
if (x != 0.0) {
|
||||
p = p / x;
|
||||
q = q / x;
|
||||
r = r / x;
|
||||
}
|
||||
}
|
||||
if (x == 0.0) {
|
||||
break;
|
||||
}
|
||||
s = Math.sqrt(p * p + q * q + r * r);
|
||||
if (p < 0) {
|
||||
s = -s;
|
||||
}
|
||||
if (s != 0) {
|
||||
if (k != m) {
|
||||
H[k][k-1] = -s * x;
|
||||
} else if (l != m) {
|
||||
H[k][k-1] = -H[k][k-1];
|
||||
}
|
||||
p = p + s;
|
||||
x = p / s;
|
||||
y = q / s;
|
||||
z = r / s;
|
||||
q = q / p;
|
||||
r = r / p;
|
||||
|
||||
// Row modification
|
||||
|
||||
for (int j = k; j < nn; j++) {
|
||||
p = H[k][j] + q * H[k+1][j];
|
||||
if (notlast) {
|
||||
p = p + r * H[k+2][j];
|
||||
H[k+2][j] = H[k+2][j] - p * z;
|
||||
}
|
||||
H[k][j] = H[k][j] - p * x;
|
||||
H[k+1][j] = H[k+1][j] - p * y;
|
||||
}
|
||||
|
||||
// Column modification
|
||||
|
||||
for (int i = 0; i <= Math.min(n,k+3); i++) {
|
||||
p = x * H[i][k] + y * H[i][k+1];
|
||||
if (notlast) {
|
||||
p = p + z * H[i][k+2];
|
||||
H[i][k+2] = H[i][k+2] - p * r;
|
||||
}
|
||||
H[i][k] = H[i][k] - p;
|
||||
H[i][k+1] = H[i][k+1] - p * q;
|
||||
}
|
||||
|
||||
// Accumulate transformations
|
||||
|
||||
for (int i = low; i <= high; i++) {
|
||||
p = x * V[i][k] + y * V[i][k+1];
|
||||
if (notlast) {
|
||||
p = p + z * V[i][k+2];
|
||||
V[i][k+2] = V[i][k+2] - p * r;
|
||||
}
|
||||
V[i][k] = V[i][k] - p;
|
||||
V[i][k+1] = V[i][k+1] - p * q;
|
||||
}
|
||||
} // (s != 0)
|
||||
} // k loop
|
||||
} // check convergence
|
||||
} // while (n >= low)
|
||||
|
||||
// Backsubstitute to find vectors of upper triangular form
|
||||
|
||||
if (norm == 0.0) {
|
||||
return;
|
||||
}
|
||||
|
||||
for (n = nn-1; n >= 0; n--) {
|
||||
p = d[n];
|
||||
q = e[n];
|
||||
|
||||
// Real vector
|
||||
|
||||
if (q == 0) {
|
||||
int l = n;
|
||||
H[n][n] = 1.0;
|
||||
for (int i = n-1; i >= 0; i--) {
|
||||
w = H[i][i] - p;
|
||||
r = 0.0;
|
||||
for (int j = l; j <= n; j++) {
|
||||
r = r + H[i][j] * H[j][n];
|
||||
}
|
||||
if (e[i] < 0.0) {
|
||||
z = w;
|
||||
s = r;
|
||||
} else {
|
||||
l = i;
|
||||
if (e[i] == 0.0) {
|
||||
if (w != 0.0) {
|
||||
H[i][n] = -r / w;
|
||||
} else {
|
||||
H[i][n] = -r / (eps * norm);
|
||||
}
|
||||
|
||||
// Solve real equations
|
||||
|
||||
} else {
|
||||
x = H[i][i+1];
|
||||
y = H[i+1][i];
|
||||
q = (d[i] - p) * (d[i] - p) + e[i] * e[i];
|
||||
t = (x * s - z * r) / q;
|
||||
H[i][n] = t;
|
||||
if (Math.abs(x) > Math.abs(z)) {
|
||||
H[i+1][n] = (-r - w * t) / x;
|
||||
} else {
|
||||
H[i+1][n] = (-s - y * t) / z;
|
||||
}
|
||||
}
|
||||
|
||||
// Overflow control
|
||||
|
||||
t = Math.abs(H[i][n]);
|
||||
if ((eps * t) * t > 1) {
|
||||
for (int j = i; j <= n; j++) {
|
||||
H[j][n] = H[j][n] / t;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Complex vector
|
||||
|
||||
} else if (q < 0) {
|
||||
int l = n-1;
|
||||
|
||||
// Last vector component imaginary so matrix is triangular
|
||||
|
||||
if (Math.abs(H[n][n-1]) > Math.abs(H[n-1][n])) {
|
||||
H[n-1][n-1] = q / H[n][n-1];
|
||||
H[n-1][n] = -(H[n][n] - p) / H[n][n-1];
|
||||
} else {
|
||||
cdiv(0.0,-H[n-1][n],H[n-1][n-1]-p,q);
|
||||
H[n-1][n-1] = cdivr;
|
||||
H[n-1][n] = cdivi;
|
||||
}
|
||||
H[n][n-1] = 0.0;
|
||||
H[n][n] = 1.0;
|
||||
for (int i = n-2; i >= 0; i--) {
|
||||
double ra,sa,vr,vi;
|
||||
ra = 0.0;
|
||||
sa = 0.0;
|
||||
for (int j = l; j <= n; j++) {
|
||||
ra = ra + H[i][j] * H[j][n-1];
|
||||
sa = sa + H[i][j] * H[j][n];
|
||||
}
|
||||
w = H[i][i] - p;
|
||||
|
||||
if (e[i] < 0.0) {
|
||||
z = w;
|
||||
r = ra;
|
||||
s = sa;
|
||||
} else {
|
||||
l = i;
|
||||
if (e[i] == 0) {
|
||||
cdiv(-ra,-sa,w,q);
|
||||
H[i][n-1] = cdivr;
|
||||
H[i][n] = cdivi;
|
||||
} else {
|
||||
|
||||
// Solve complex equations
|
||||
|
||||
x = H[i][i+1];
|
||||
y = H[i+1][i];
|
||||
vr = (d[i] - p) * (d[i] - p) + e[i] * e[i] - q * q;
|
||||
vi = (d[i] - p) * 2.0 * q;
|
||||
if (vr == 0.0 & vi == 0.0) {
|
||||
vr = eps * norm * (Math.abs(w) + Math.abs(q) +
|
||||
Math.abs(x) + Math.abs(y) + Math.abs(z));
|
||||
}
|
||||
cdiv(x*r-z*ra+q*sa,x*s-z*sa-q*ra,vr,vi);
|
||||
H[i][n-1] = cdivr;
|
||||
H[i][n] = cdivi;
|
||||
if (Math.abs(x) > (Math.abs(z) + Math.abs(q))) {
|
||||
H[i+1][n-1] = (-ra - w * H[i][n-1] + q * H[i][n]) / x;
|
||||
H[i+1][n] = (-sa - w * H[i][n] - q * H[i][n-1]) / x;
|
||||
} else {
|
||||
cdiv(-r-y*H[i][n-1],-s-y*H[i][n],z,q);
|
||||
H[i+1][n-1] = cdivr;
|
||||
H[i+1][n] = cdivi;
|
||||
}
|
||||
}
|
||||
|
||||
// Overflow control
|
||||
|
||||
t = Math.max(Math.abs(H[i][n-1]),Math.abs(H[i][n]));
|
||||
if ((eps * t) * t > 1) {
|
||||
for (int j = i; j <= n; j++) {
|
||||
H[j][n-1] = H[j][n-1] / t;
|
||||
H[j][n] = H[j][n] / t;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Vectors of isolated roots
|
||||
|
||||
for (int i = 0; i < nn; i++) {
|
||||
if (i < low | i > high) {
|
||||
for (int j = i; j < nn; j++) {
|
||||
V[i][j] = H[i][j];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Back transformation to get eigenvectors of original matrix
|
||||
|
||||
for (int j = nn-1; j >= low; j--) {
|
||||
for (int i = low; i <= high; i++) {
|
||||
z = 0.0;
|
||||
for (int k = low; k <= Math.min(j,high); k++) {
|
||||
z = z + V[i][k] * H[k][j];
|
||||
}
|
||||
V[i][j] = z;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* ------------------------
|
||||
Constructor
|
||||
* ------------------------ */
|
||||
|
||||
/** Check for symmetry, then construct the eigenvalue decomposition
|
||||
@param A Square matrix
|
||||
@return Structure to access D and V.
|
||||
*/
|
||||
|
||||
public EigenvalueDecomposition (Matrix Arg) {
|
||||
double[][] A = Arg.getArray();
|
||||
n = Arg.getColumnDimension();
|
||||
V = new double[n][n];
|
||||
d = new double[n];
|
||||
e = new double[n];
|
||||
|
||||
issymmetric = true;
|
||||
for (int j = 0; (j < n) & issymmetric; j++) {
|
||||
for (int i = 0; (i < n) & issymmetric; i++) {
|
||||
issymmetric = (A[i][j] == A[j][i]);
|
||||
}
|
||||
}
|
||||
|
||||
if (issymmetric) {
|
||||
for (int i = 0; i < n; i++) {
|
||||
for (int j = 0; j < n; j++) {
|
||||
V[i][j] = A[i][j];
|
||||
}
|
||||
}
|
||||
|
||||
// Tridiagonalize.
|
||||
tred2();
|
||||
|
||||
// Diagonalize.
|
||||
tql2();
|
||||
|
||||
} else {
|
||||
H = new double[n][n];
|
||||
ort = new double[n];
|
||||
|
||||
for (int j = 0; j < n; j++) {
|
||||
for (int i = 0; i < n; i++) {
|
||||
H[i][j] = A[i][j];
|
||||
}
|
||||
}
|
||||
|
||||
// Reduce to Hessenberg form.
|
||||
orthes();
|
||||
|
||||
// Reduce Hessenberg to real Schur form.
|
||||
hqr2();
|
||||
}
|
||||
}
|
||||
|
||||
/* ------------------------
|
||||
Public Methods
|
||||
* ------------------------ */
|
||||
|
||||
/** Return the eigenvector matrix
|
||||
@return V
|
||||
*/
|
||||
|
||||
public Matrix getV () {
|
||||
return new Matrix(V,n,n);
|
||||
}
|
||||
|
||||
/** Return the real parts of the eigenvalues
|
||||
@return real(diag(D))
|
||||
*/
|
||||
|
||||
public double[] getRealEigenvalues () {
|
||||
return d;
|
||||
}
|
||||
|
||||
/** Return the imaginary parts of the eigenvalues
|
||||
@return imag(diag(D))
|
||||
*/
|
||||
|
||||
public double[] getImagEigenvalues () {
|
||||
return e;
|
||||
}
|
||||
|
||||
/** Return the block diagonal eigenvalue matrix
|
||||
@return D
|
||||
*/
|
||||
|
||||
public Matrix getD () {
|
||||
Matrix X = new Matrix(n,n);
|
||||
double[][] D = X.getArray();
|
||||
for (int i = 0; i < n; i++) {
|
||||
for (int j = 0; j < n; j++) {
|
||||
D[i][j] = 0.0;
|
||||
}
|
||||
D[i][i] = d[i];
|
||||
if (e[i] > 0) {
|
||||
D[i][i+1] = e[i];
|
||||
} else if (e[i] < 0) {
|
||||
D[i][i-1] = e[i];
|
||||
}
|
||||
}
|
||||
return X;
|
||||
}
|
||||
}
|
318
src/wsi/ra/math/Jama/LUDecomposition.java
Normal file
318
src/wsi/ra/math/Jama/LUDecomposition.java
Normal file
@@ -0,0 +1,318 @@
|
||||
package wsi.ra.math.Jama;
|
||||
|
||||
|
||||
/** LU Decomposition.
|
||||
<P>
|
||||
For an m-by-n matrix A with m >= n, the LU decomposition is an m-by-n
|
||||
unit lower triangular matrix L, an n-by-n upper triangular matrix U,
|
||||
and a permutation vector piv of length m so that A(piv,:) = L*U.
|
||||
If m < n, then L is m-by-m and U is m-by-n.
|
||||
<P>
|
||||
The LU decompostion with pivoting always exists, even if the matrix is
|
||||
singular, so the constructor will never fail. The primary use of the
|
||||
LU decomposition is in the solution of square systems of simultaneous
|
||||
linear equations. This will fail if isNonsingular() returns false.
|
||||
*/
|
||||
|
||||
public class LUDecomposition implements java.io.Serializable {
|
||||
|
||||
/* ------------------------
|
||||
Class variables
|
||||
* ------------------------ */
|
||||
|
||||
/** Array for internal storage of decomposition.
|
||||
@serial internal array storage.
|
||||
*/
|
||||
private double[][] LU;
|
||||
|
||||
/** Row and column dimensions, and pivot sign.
|
||||
@serial column dimension.
|
||||
@serial row dimension.
|
||||
@serial pivot sign.
|
||||
*/
|
||||
private int m, n, pivsign;
|
||||
|
||||
/** Internal storage of pivot vector.
|
||||
@serial pivot vector.
|
||||
*/
|
||||
private int[] piv;
|
||||
|
||||
/* ------------------------
|
||||
Constructor
|
||||
* ------------------------ */
|
||||
|
||||
/** LU Decomposition
|
||||
@param A Rectangular matrix
|
||||
@return Structure to access L, U and piv.
|
||||
*/
|
||||
|
||||
public LUDecomposition (Matrix A) {
|
||||
|
||||
// Use a "left-looking", dot-product, Crout/Doolittle algorithm.
|
||||
// System.out.println("A=");
|
||||
// A.print(A.getRowDimension(),A.getColumnDimension());
|
||||
|
||||
LU = A.getArrayCopy();
|
||||
m = A.getRowDimension();
|
||||
n = A.getColumnDimension();
|
||||
piv = new int[m];
|
||||
for (int i = 0; i < m; i++) {
|
||||
piv[i] = i;
|
||||
}
|
||||
pivsign = 1;
|
||||
double[] LUrowi;
|
||||
double[] LUcolj = new double[m];
|
||||
|
||||
// Outer loop.
|
||||
|
||||
for (int j = 0; j < n; j++) {
|
||||
|
||||
// Make a copy of the j-th column to localize references.
|
||||
|
||||
for (int i = 0; i < m; i++) {
|
||||
LUcolj[i] = LU[i][j];
|
||||
}
|
||||
|
||||
// Apply previous transformations.
|
||||
|
||||
for (int i = 0; i < m; i++) {
|
||||
LUrowi = LU[i];
|
||||
|
||||
// Most of the time is spent in the following dot product.
|
||||
|
||||
int kmax = Math.min(i,j);
|
||||
double s = 0.0;
|
||||
for (int k = 0; k < kmax; k++) {
|
||||
s += LUrowi[k]*LUcolj[k];
|
||||
}
|
||||
|
||||
LUrowi[j] = LUcolj[i] -= s;
|
||||
}
|
||||
|
||||
// Find pivot and exchange if necessary.
|
||||
|
||||
int p = j;
|
||||
for (int i = j+1; i < m; i++) {
|
||||
if (Math.abs(LUcolj[i]) > Math.abs(LUcolj[p])) {
|
||||
p = i;
|
||||
}
|
||||
}
|
||||
if (p != j) {
|
||||
for (int k = 0; k < n; k++) {
|
||||
double t = LU[p][k]; LU[p][k] = LU[j][k]; LU[j][k] = t;
|
||||
}
|
||||
int k = piv[p]; piv[p] = piv[j]; piv[j] = k;
|
||||
pivsign = -pivsign;
|
||||
}
|
||||
|
||||
// Compute multipliers.
|
||||
|
||||
if (j < m & LU[j][j] != 0.0) {
|
||||
for (int i = j+1; i < m; i++) {
|
||||
LU[i][j] /= LU[j][j];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* ------------------------
|
||||
Temporary, experimental code.
|
||||
------------------------ *\
|
||||
|
||||
\** LU Decomposition, computed by Gaussian elimination.
|
||||
<P>
|
||||
This constructor computes L and U with the "daxpy"-based elimination
|
||||
algorithm used in LINPACK and MATLAB. In Java, we suspect the dot-product,
|
||||
Crout algorithm will be faster. We have temporarily included this
|
||||
constructor until timing experiments confirm this suspicion.
|
||||
<P>
|
||||
@param A Rectangular matrix
|
||||
@param linpackflag Use Gaussian elimination. Actual value ignored.
|
||||
@return Structure to access L, U and piv.
|
||||
*\
|
||||
|
||||
public LUDecomposition (Matrix A, int linpackflag) {
|
||||
// Initialize.
|
||||
LU = A.getArrayCopy();
|
||||
m = A.getRowDimension();
|
||||
n = A.getColumnDimension();
|
||||
piv = new int[m];
|
||||
for (int i = 0; i < m; i++) {
|
||||
piv[i] = i;
|
||||
}
|
||||
pivsign = 1;
|
||||
// Main loop.
|
||||
for (int k = 0; k < n; k++) {
|
||||
// Find pivot.
|
||||
int p = k;
|
||||
for (int i = k+1; i < m; i++) {
|
||||
if (Math.abs(LU[i][k]) > Math.abs(LU[p][k])) {
|
||||
p = i;
|
||||
}
|
||||
}
|
||||
// Exchange if necessary.
|
||||
if (p != k) {
|
||||
for (int j = 0; j < n; j++) {
|
||||
double t = LU[p][j]; LU[p][j] = LU[k][j]; LU[k][j] = t;
|
||||
}
|
||||
int t = piv[p]; piv[p] = piv[k]; piv[k] = t;
|
||||
pivsign = -pivsign;
|
||||
}
|
||||
// Compute multipliers and eliminate k-th column.
|
||||
if (LU[k][k] != 0.0) {
|
||||
for (int i = k+1; i < m; i++) {
|
||||
LU[i][k] /= LU[k][k];
|
||||
for (int j = k+1; j < n; j++) {
|
||||
LU[i][j] -= LU[i][k]*LU[k][j];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
\* ------------------------
|
||||
End of temporary code.
|
||||
* ------------------------ */
|
||||
|
||||
/* ------------------------
|
||||
Public Methods
|
||||
* ------------------------ */
|
||||
|
||||
/** Is the matrix nonsingular?
|
||||
@return true if U, and hence A, is nonsingular.
|
||||
*/
|
||||
|
||||
public boolean isNonsingular () {
|
||||
for (int j = 0; j < n; j++) {
|
||||
//System.out.println("LU[j][j]"+LU[j][j]);
|
||||
if (LU[j][j] == 0)
|
||||
return false;
|
||||
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
/** Return lower triangular factor
|
||||
@return L
|
||||
*/
|
||||
|
||||
public Matrix getL () {
|
||||
Matrix X = new Matrix(m,n);
|
||||
double[][] L = X.getArray();
|
||||
for (int i = 0; i < m; i++) {
|
||||
for (int j = 0; j < n; j++) {
|
||||
if (i > j) {
|
||||
L[i][j] = LU[i][j];
|
||||
} else if (i == j) {
|
||||
L[i][j] = 1.0;
|
||||
} else {
|
||||
L[i][j] = 0.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
return X;
|
||||
}
|
||||
|
||||
/** Return upper triangular factor
|
||||
@return U
|
||||
*/
|
||||
|
||||
public Matrix getU () {
|
||||
Matrix X = new Matrix(n,n);
|
||||
double[][] U = X.getArray();
|
||||
for (int i = 0; i < n; i++) {
|
||||
for (int j = 0; j < n; j++) {
|
||||
if (i <= j) {
|
||||
U[i][j] = LU[i][j];
|
||||
} else {
|
||||
U[i][j] = 0.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
return X;
|
||||
}
|
||||
|
||||
/** Return pivot permutation vector
|
||||
@return piv
|
||||
*/
|
||||
|
||||
public int[] getPivot () {
|
||||
int[] p = new int[m];
|
||||
for (int i = 0; i < m; i++) {
|
||||
p[i] = piv[i];
|
||||
}
|
||||
return p;
|
||||
}
|
||||
|
||||
/** Return pivot permutation vector as a one-dimensional double array
|
||||
@return (double) piv
|
||||
*/
|
||||
|
||||
public double[] getDoublePivot () {
|
||||
double[] vals = new double[m];
|
||||
for (int i = 0; i < m; i++) {
|
||||
vals[i] = (double) piv[i];
|
||||
}
|
||||
return vals;
|
||||
}
|
||||
|
||||
/** Determinant
|
||||
@return det(A)
|
||||
@exception IllegalArgumentException Matrix must be square
|
||||
*/
|
||||
|
||||
public double det () {
|
||||
if (m != n) {
|
||||
throw new IllegalArgumentException("Matrix must be square.");
|
||||
}
|
||||
double d = (double) pivsign;
|
||||
for (int j = 0; j < n; j++) {
|
||||
d *= LU[j][j];
|
||||
}
|
||||
return d;
|
||||
}
|
||||
|
||||
/** Solve A*X = B
|
||||
@param B A Matrix with as many rows as A and any number of columns.
|
||||
@return X so that L*U*X = B(piv,:)
|
||||
@exception IllegalArgumentException Matrix row dimensions must agree.
|
||||
@exception RuntimeException Matrix is singular.
|
||||
*/
|
||||
|
||||
public Matrix solve (Matrix B) {
|
||||
if (B.getRowDimension() != m) {
|
||||
throw new IllegalArgumentException("Matrix row dimensions must agree.");
|
||||
}
|
||||
if (!this.isNonsingular()) {
|
||||
//System.out.println("B=");
|
||||
//B.print(B.getRowDimension(),B.getColumnDimension());
|
||||
throw new RuntimeException("Matrix is singular.");
|
||||
}
|
||||
|
||||
// Copy right hand side with pivoting
|
||||
int nx = B.getColumnDimension();
|
||||
Matrix Xmat = B.getMatrix(piv,0,nx-1);
|
||||
double[][] X = Xmat.getArray();
|
||||
|
||||
// Solve L*Y = B(piv,:)
|
||||
for (int k = 0; k < n; k++) {
|
||||
for (int i = k+1; i < n; i++) {
|
||||
for (int j = 0; j < nx; j++) {
|
||||
X[i][j] -= X[k][j]*LU[i][k];
|
||||
}
|
||||
}
|
||||
}
|
||||
// Solve U*X = Y;
|
||||
for (int k = n-1; k >= 0; k--) {
|
||||
for (int j = 0; j < nx; j++) {
|
||||
X[k][j] /= LU[k][k];
|
||||
}
|
||||
for (int i = 0; i < k; i++) {
|
||||
for (int j = 0; j < nx; j++) {
|
||||
X[i][j] -= X[k][j]*LU[i][k];
|
||||
}
|
||||
}
|
||||
}
|
||||
return Xmat;
|
||||
}
|
||||
}
|
1111
src/wsi/ra/math/Jama/Matrix.java
Normal file
1111
src/wsi/ra/math/Jama/Matrix.java
Normal file
File diff suppressed because it is too large
Load Diff
218
src/wsi/ra/math/Jama/QRDecomposition.java
Normal file
218
src/wsi/ra/math/Jama/QRDecomposition.java
Normal file
@@ -0,0 +1,218 @@
|
||||
package wsi.ra.math.Jama;
|
||||
import wsi.ra.math.Jama.util.Maths;
|
||||
|
||||
/** QR Decomposition.
|
||||
<P>
|
||||
For an m-by-n matrix A with m >= n, the QR decomposition is an m-by-n
|
||||
orthogonal matrix Q and an n-by-n upper triangular matrix R so that
|
||||
A = Q*R.
|
||||
<P>
|
||||
The QR decompostion always exists, even if the matrix does not have
|
||||
full rank, so the constructor will never fail. The primary use of the
|
||||
QR decomposition is in the least squares solution of nonsquare systems
|
||||
of simultaneous linear equations. This will fail if isFullRank()
|
||||
returns false.
|
||||
*/
|
||||
|
||||
public class QRDecomposition implements java.io.Serializable {
|
||||
|
||||
/* ------------------------
|
||||
Class variables
|
||||
* ------------------------ */
|
||||
|
||||
/** Array for internal storage of decomposition.
|
||||
@serial internal array storage.
|
||||
*/
|
||||
private double[][] QR;
|
||||
|
||||
/** Row and column dimensions.
|
||||
@serial column dimension.
|
||||
@serial row dimension.
|
||||
*/
|
||||
private int m, n;
|
||||
|
||||
/** Array for internal storage of diagonal of R.
|
||||
@serial diagonal of R.
|
||||
*/
|
||||
private double[] Rdiag;
|
||||
|
||||
/* ------------------------
|
||||
Constructor
|
||||
* ------------------------ */
|
||||
|
||||
/** QR Decomposition, computed by Householder reflections.
|
||||
@param A Rectangular matrix
|
||||
@return Structure to access R and the Householder vectors and compute Q.
|
||||
*/
|
||||
|
||||
public QRDecomposition (Matrix A) {
|
||||
// Initialize.
|
||||
QR = A.getArrayCopy();
|
||||
m = A.getRowDimension();
|
||||
n = A.getColumnDimension();
|
||||
Rdiag = new double[n];
|
||||
|
||||
// Main loop.
|
||||
for (int k = 0; k < n; k++) {
|
||||
// Compute 2-norm of k-th column without under/overflow.
|
||||
double nrm = 0;
|
||||
for (int i = k; i < m; i++) {
|
||||
nrm = Maths.hypot(nrm,QR[i][k]);
|
||||
}
|
||||
|
||||
if (nrm != 0.0) {
|
||||
// Form k-th Householder vector.
|
||||
if (QR[k][k] < 0) {
|
||||
nrm = -nrm;
|
||||
}
|
||||
for (int i = k; i < m; i++) {
|
||||
QR[i][k] /= nrm;
|
||||
}
|
||||
QR[k][k] += 1.0;
|
||||
|
||||
// Apply transformation to remaining columns.
|
||||
for (int j = k+1; j < n; j++) {
|
||||
double s = 0.0;
|
||||
for (int i = k; i < m; i++) {
|
||||
s += QR[i][k]*QR[i][j];
|
||||
}
|
||||
s = -s/QR[k][k];
|
||||
for (int i = k; i < m; i++) {
|
||||
QR[i][j] += s*QR[i][k];
|
||||
}
|
||||
}
|
||||
}
|
||||
Rdiag[k] = -nrm;
|
||||
}
|
||||
}
|
||||
|
||||
/* ------------------------
|
||||
Public Methods
|
||||
* ------------------------ */
|
||||
|
||||
/** Is the matrix full rank?
|
||||
@return true if R, and hence A, has full rank.
|
||||
*/
|
||||
|
||||
public boolean isFullRank () {
|
||||
for (int j = 0; j < n; j++) {
|
||||
if (Rdiag[j] == 0)
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
/** Return the Householder vectors
|
||||
@return Lower trapezoidal matrix whose columns define the reflections
|
||||
*/
|
||||
|
||||
public Matrix getH () {
|
||||
Matrix X = new Matrix(m,n);
|
||||
double[][] H = X.getArray();
|
||||
for (int i = 0; i < m; i++) {
|
||||
for (int j = 0; j < n; j++) {
|
||||
if (i >= j) {
|
||||
H[i][j] = QR[i][j];
|
||||
} else {
|
||||
H[i][j] = 0.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
return X;
|
||||
}
|
||||
|
||||
/** Return the upper triangular factor
|
||||
@return R
|
||||
*/
|
||||
|
||||
public Matrix getR () {
|
||||
Matrix X = new Matrix(n,n);
|
||||
double[][] R = X.getArray();
|
||||
for (int i = 0; i < n; i++) {
|
||||
for (int j = 0; j < n; j++) {
|
||||
if (i < j) {
|
||||
R[i][j] = QR[i][j];
|
||||
} else if (i == j) {
|
||||
R[i][j] = Rdiag[i];
|
||||
} else {
|
||||
R[i][j] = 0.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
return X;
|
||||
}
|
||||
|
||||
/** Generate and return the (economy-sized) orthogonal factor
|
||||
@return Q
|
||||
*/
|
||||
|
||||
public Matrix getQ () {
|
||||
Matrix X = new Matrix(m,n);
|
||||
double[][] Q = X.getArray();
|
||||
for (int k = n-1; k >= 0; k--) {
|
||||
for (int i = 0; i < m; i++) {
|
||||
Q[i][k] = 0.0;
|
||||
}
|
||||
Q[k][k] = 1.0;
|
||||
for (int j = k; j < n; j++) {
|
||||
if (QR[k][k] != 0) {
|
||||
double s = 0.0;
|
||||
for (int i = k; i < m; i++) {
|
||||
s += QR[i][k]*Q[i][j];
|
||||
}
|
||||
s = -s/QR[k][k];
|
||||
for (int i = k; i < m; i++) {
|
||||
Q[i][j] += s*QR[i][k];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return X;
|
||||
}
|
||||
|
||||
/** Least squares solution of A*X = B
|
||||
@param B A Matrix with as many rows as A and any number of columns.
|
||||
@return X that minimizes the two norm of Q*R*X-B.
|
||||
@exception IllegalArgumentException Matrix row dimensions must agree.
|
||||
@exception RuntimeException Matrix is rank deficient.
|
||||
*/
|
||||
|
||||
public Matrix solve (Matrix B) {
|
||||
if (B.getRowDimension() != m) {
|
||||
throw new IllegalArgumentException("Matrix row dimensions must agree.");
|
||||
}
|
||||
if (!this.isFullRank()) {
|
||||
throw new RuntimeException("Matrix is rank deficient.");
|
||||
}
|
||||
|
||||
// Copy right hand side
|
||||
int nx = B.getColumnDimension();
|
||||
double[][] X = B.getArrayCopy();
|
||||
|
||||
// Compute Y = transpose(Q)*B
|
||||
for (int k = 0; k < n; k++) {
|
||||
for (int j = 0; j < nx; j++) {
|
||||
double s = 0.0;
|
||||
for (int i = k; i < m; i++) {
|
||||
s += QR[i][k]*X[i][j];
|
||||
}
|
||||
s = -s/QR[k][k];
|
||||
for (int i = k; i < m; i++) {
|
||||
X[i][j] += s*QR[i][k];
|
||||
}
|
||||
}
|
||||
}
|
||||
// Solve R*X = Y;
|
||||
for (int k = n-1; k >= 0; k--) {
|
||||
for (int j = 0; j < nx; j++) {
|
||||
X[k][j] /= Rdiag[k];
|
||||
}
|
||||
for (int i = 0; i < k; i++) {
|
||||
for (int j = 0; j < nx; j++) {
|
||||
X[i][j] -= X[k][j]*QR[i][k];
|
||||
}
|
||||
}
|
||||
}
|
||||
return (new Matrix(X,n,nx).getMatrix(0,n-1,0,nx-1));
|
||||
}
|
||||
}
|
540
src/wsi/ra/math/Jama/SingularValueDecomposition.java
Normal file
540
src/wsi/ra/math/Jama/SingularValueDecomposition.java
Normal file
@@ -0,0 +1,540 @@
|
||||
package wsi.ra.math.Jama;
|
||||
import wsi.ra.math.Jama.util.*;
|
||||
|
||||
|
||||
/** Singular Value Decomposition.
|
||||
<P>
|
||||
For an m-by-n matrix A with m >= n, the singular value decomposition is
|
||||
an m-by-n orthogonal matrix U, an n-by-n diagonal matrix S, and
|
||||
an n-by-n orthogonal matrix V so that A = U*S*V'.
|
||||
<P>
|
||||
The singular values, sigma[k] = S[k][k], are ordered so that
|
||||
sigma[0] >= sigma[1] >= ... >= sigma[n-1].
|
||||
<P>
|
||||
The singular value decompostion always exists, so the constructor will
|
||||
never fail. The matrix condition number and the effective numerical
|
||||
rank can be computed from this decomposition.
|
||||
*/
|
||||
|
||||
public class SingularValueDecomposition implements java.io.Serializable {
|
||||
|
||||
/* ------------------------
|
||||
Class variables
|
||||
* ------------------------ */
|
||||
|
||||
/** Arrays for internal storage of U and V.
|
||||
@serial internal storage of U.
|
||||
@serial internal storage of V.
|
||||
*/
|
||||
private double[][] U, V;
|
||||
|
||||
/** Array for internal storage of singular values.
|
||||
@serial internal storage of singular values.
|
||||
*/
|
||||
private double[] s;
|
||||
|
||||
/** Row and column dimensions.
|
||||
@serial row dimension.
|
||||
@serial column dimension.
|
||||
*/
|
||||
private int m, n;
|
||||
|
||||
/* ------------------------
|
||||
Constructor
|
||||
* ------------------------ */
|
||||
|
||||
/** Construct the singular value decomposition
|
||||
@param A Rectangular matrix
|
||||
@return Structure to access U, S and V.
|
||||
*/
|
||||
|
||||
public SingularValueDecomposition (Matrix Arg) {
|
||||
|
||||
// Derived from LINPACK code.
|
||||
// Initialize.
|
||||
double[][] A = Arg.getArrayCopy();
|
||||
m = Arg.getRowDimension();
|
||||
n = Arg.getColumnDimension();
|
||||
int nu = Math.min(m,n);
|
||||
s = new double [Math.min(m+1,n)];
|
||||
U = new double [m][nu];
|
||||
V = new double [n][n];
|
||||
double[] e = new double [n];
|
||||
double[] work = new double [m];
|
||||
boolean wantu = true;
|
||||
boolean wantv = true;
|
||||
|
||||
// Reduce A to bidiagonal form, storing the diagonal elements
|
||||
// in s and the super-diagonal elements in e.
|
||||
|
||||
int nct = Math.min(m-1,n);
|
||||
int nrt = Math.max(0,Math.min(n-2,m));
|
||||
for (int k = 0; k < Math.max(nct,nrt); k++) {
|
||||
if (k < nct) {
|
||||
|
||||
// Compute the transformation for the k-th column and
|
||||
// place the k-th diagonal in s[k].
|
||||
// Compute 2-norm of k-th column without under/overflow.
|
||||
s[k] = 0;
|
||||
for (int i = k; i < m; i++) {
|
||||
s[k] = Maths.hypot(s[k],A[i][k]);
|
||||
}
|
||||
if (s[k] != 0.0) {
|
||||
if (A[k][k] < 0.0) {
|
||||
s[k] = -s[k];
|
||||
}
|
||||
for (int i = k; i < m; i++) {
|
||||
A[i][k] /= s[k];
|
||||
}
|
||||
A[k][k] += 1.0;
|
||||
}
|
||||
s[k] = -s[k];
|
||||
}
|
||||
for (int j = k+1; j < n; j++) {
|
||||
if ((k < nct) & (s[k] != 0.0)) {
|
||||
|
||||
// Apply the transformation.
|
||||
|
||||
double t = 0;
|
||||
for (int i = k; i < m; i++) {
|
||||
t += A[i][k]*A[i][j];
|
||||
}
|
||||
t = -t/A[k][k];
|
||||
for (int i = k; i < m; i++) {
|
||||
A[i][j] += t*A[i][k];
|
||||
}
|
||||
}
|
||||
|
||||
// Place the k-th row of A into e for the
|
||||
// subsequent calculation of the row transformation.
|
||||
|
||||
e[j] = A[k][j];
|
||||
}
|
||||
if (wantu & (k < nct)) {
|
||||
|
||||
// Place the transformation in U for subsequent back
|
||||
// multiplication.
|
||||
|
||||
for (int i = k; i < m; i++) {
|
||||
U[i][k] = A[i][k];
|
||||
}
|
||||
}
|
||||
if (k < nrt) {
|
||||
|
||||
// Compute the k-th row transformation and place the
|
||||
// k-th super-diagonal in e[k].
|
||||
// Compute 2-norm without under/overflow.
|
||||
e[k] = 0;
|
||||
for (int i = k+1; i < n; i++) {
|
||||
e[k] = Maths.hypot(e[k],e[i]);
|
||||
}
|
||||
if (e[k] != 0.0) {
|
||||
if (e[k+1] < 0.0) {
|
||||
e[k] = -e[k];
|
||||
}
|
||||
for (int i = k+1; i < n; i++) {
|
||||
e[i] /= e[k];
|
||||
}
|
||||
e[k+1] += 1.0;
|
||||
}
|
||||
e[k] = -e[k];
|
||||
if ((k+1 < m) & (e[k] != 0.0)) {
|
||||
|
||||
// Apply the transformation.
|
||||
|
||||
for (int i = k+1; i < m; i++) {
|
||||
work[i] = 0.0;
|
||||
}
|
||||
for (int j = k+1; j < n; j++) {
|
||||
for (int i = k+1; i < m; i++) {
|
||||
work[i] += e[j]*A[i][j];
|
||||
}
|
||||
}
|
||||
for (int j = k+1; j < n; j++) {
|
||||
double t = -e[j]/e[k+1];
|
||||
for (int i = k+1; i < m; i++) {
|
||||
A[i][j] += t*work[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
if (wantv) {
|
||||
|
||||
// Place the transformation in V for subsequent
|
||||
// back multiplication.
|
||||
|
||||
for (int i = k+1; i < n; i++) {
|
||||
V[i][k] = e[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Set up the final bidiagonal matrix or order p.
|
||||
|
||||
int p = Math.min(n,m+1);
|
||||
if (nct < n) {
|
||||
s[nct] = A[nct][nct];
|
||||
}
|
||||
if (m < p) {
|
||||
s[p-1] = 0.0;
|
||||
}
|
||||
if (nrt+1 < p) {
|
||||
e[nrt] = A[nrt][p-1];
|
||||
}
|
||||
e[p-1] = 0.0;
|
||||
|
||||
// If required, generate U.
|
||||
|
||||
if (wantu) {
|
||||
for (int j = nct; j < nu; j++) {
|
||||
for (int i = 0; i < m; i++) {
|
||||
U[i][j] = 0.0;
|
||||
}
|
||||
U[j][j] = 1.0;
|
||||
}
|
||||
for (int k = nct-1; k >= 0; k--) {
|
||||
if (s[k] != 0.0) {
|
||||
for (int j = k+1; j < nu; j++) {
|
||||
double t = 0;
|
||||
for (int i = k; i < m; i++) {
|
||||
t += U[i][k]*U[i][j];
|
||||
}
|
||||
t = -t/U[k][k];
|
||||
for (int i = k; i < m; i++) {
|
||||
U[i][j] += t*U[i][k];
|
||||
}
|
||||
}
|
||||
for (int i = k; i < m; i++ ) {
|
||||
U[i][k] = -U[i][k];
|
||||
}
|
||||
U[k][k] = 1.0 + U[k][k];
|
||||
for (int i = 0; i < k-1; i++) {
|
||||
U[i][k] = 0.0;
|
||||
}
|
||||
} else {
|
||||
for (int i = 0; i < m; i++) {
|
||||
U[i][k] = 0.0;
|
||||
}
|
||||
U[k][k] = 1.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// If required, generate V.
|
||||
|
||||
if (wantv) {
|
||||
for (int k = n-1; k >= 0; k--) {
|
||||
if ((k < nrt) & (e[k] != 0.0)) {
|
||||
for (int j = k+1; j < nu; j++) {
|
||||
double t = 0;
|
||||
for (int i = k+1; i < n; i++) {
|
||||
t += V[i][k]*V[i][j];
|
||||
}
|
||||
t = -t/V[k+1][k];
|
||||
for (int i = k+1; i < n; i++) {
|
||||
V[i][j] += t*V[i][k];
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int i = 0; i < n; i++) {
|
||||
V[i][k] = 0.0;
|
||||
}
|
||||
V[k][k] = 1.0;
|
||||
}
|
||||
}
|
||||
|
||||
// Main iteration loop for the singular values.
|
||||
|
||||
int pp = p-1;
|
||||
int iter = 0;
|
||||
double eps = Math.pow(2.0,-52.0);
|
||||
while (p > 0) {
|
||||
int k,kase;
|
||||
|
||||
// Here is where a test for too many iterations would go.
|
||||
|
||||
// This section of the program inspects for
|
||||
// negligible elements in the s and e arrays. On
|
||||
// completion the variables kase and k are set as follows.
|
||||
|
||||
// kase = 1 if s(p) and e[k-1] are negligible and k<p
|
||||
// kase = 2 if s(k) is negligible and k<p
|
||||
// kase = 3 if e[k-1] is negligible, k<p, and
|
||||
// s(k), ..., s(p) are not negligible (qr step).
|
||||
// kase = 4 if e(p-1) is negligible (convergence).
|
||||
|
||||
for (k = p-2; k >= -1; k--) {
|
||||
if (k == -1) {
|
||||
break;
|
||||
}
|
||||
if (Math.abs(e[k]) <= eps*(Math.abs(s[k]) + Math.abs(s[k+1]))) {
|
||||
e[k] = 0.0;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (k == p-2) {
|
||||
kase = 4;
|
||||
} else {
|
||||
int ks;
|
||||
for (ks = p-1; ks >= k; ks--) {
|
||||
if (ks == k) {
|
||||
break;
|
||||
}
|
||||
double t = (ks != p ? Math.abs(e[ks]) : 0.) +
|
||||
(ks != k+1 ? Math.abs(e[ks-1]) : 0.);
|
||||
if (Math.abs(s[ks]) <= eps*t) {
|
||||
s[ks] = 0.0;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (ks == k) {
|
||||
kase = 3;
|
||||
} else if (ks == p-1) {
|
||||
kase = 1;
|
||||
} else {
|
||||
kase = 2;
|
||||
k = ks;
|
||||
}
|
||||
}
|
||||
k++;
|
||||
|
||||
// Perform the task indicated by kase.
|
||||
|
||||
switch (kase) {
|
||||
|
||||
// Deflate negligible s(p).
|
||||
|
||||
case 1: {
|
||||
double f = e[p-2];
|
||||
e[p-2] = 0.0;
|
||||
for (int j = p-2; j >= k; j--) {
|
||||
double t = Maths.hypot(s[j],f);
|
||||
double cs = s[j]/t;
|
||||
double sn = f/t;
|
||||
s[j] = t;
|
||||
if (j != k) {
|
||||
f = -sn*e[j-1];
|
||||
e[j-1] = cs*e[j-1];
|
||||
}
|
||||
if (wantv) {
|
||||
for (int i = 0; i < n; i++) {
|
||||
t = cs*V[i][j] + sn*V[i][p-1];
|
||||
V[i][p-1] = -sn*V[i][j] + cs*V[i][p-1];
|
||||
V[i][j] = t;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
// Split at negligible s(k).
|
||||
|
||||
case 2: {
|
||||
double f = e[k-1];
|
||||
e[k-1] = 0.0;
|
||||
for (int j = k; j < p; j++) {
|
||||
double t = Maths.hypot(s[j],f);
|
||||
double cs = s[j]/t;
|
||||
double sn = f/t;
|
||||
s[j] = t;
|
||||
f = -sn*e[j];
|
||||
e[j] = cs*e[j];
|
||||
if (wantu) {
|
||||
for (int i = 0; i < m; i++) {
|
||||
t = cs*U[i][j] + sn*U[i][k-1];
|
||||
U[i][k-1] = -sn*U[i][j] + cs*U[i][k-1];
|
||||
U[i][j] = t;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
// Perform one qr step.
|
||||
|
||||
case 3: {
|
||||
|
||||
// Calculate the shift.
|
||||
|
||||
double scale = Math.max(Math.max(Math.max(Math.max(
|
||||
Math.abs(s[p-1]),Math.abs(s[p-2])),Math.abs(e[p-2])),
|
||||
Math.abs(s[k])),Math.abs(e[k]));
|
||||
double sp = s[p-1]/scale;
|
||||
double spm1 = s[p-2]/scale;
|
||||
double epm1 = e[p-2]/scale;
|
||||
double sk = s[k]/scale;
|
||||
double ek = e[k]/scale;
|
||||
double b = ((spm1 + sp)*(spm1 - sp) + epm1*epm1)/2.0;
|
||||
double c = (sp*epm1)*(sp*epm1);
|
||||
double shift = 0.0;
|
||||
if ((b != 0.0) | (c != 0.0)) {
|
||||
shift = Math.sqrt(b*b + c);
|
||||
if (b < 0.0) {
|
||||
shift = -shift;
|
||||
}
|
||||
shift = c/(b + shift);
|
||||
}
|
||||
double f = (sk + sp)*(sk - sp) + shift;
|
||||
double g = sk*ek;
|
||||
|
||||
// Chase zeros.
|
||||
|
||||
for (int j = k; j < p-1; j++) {
|
||||
double t = Maths.hypot(f,g);
|
||||
double cs = f/t;
|
||||
double sn = g/t;
|
||||
if (j != k) {
|
||||
e[j-1] = t;
|
||||
}
|
||||
f = cs*s[j] + sn*e[j];
|
||||
e[j] = cs*e[j] - sn*s[j];
|
||||
g = sn*s[j+1];
|
||||
s[j+1] = cs*s[j+1];
|
||||
if (wantv) {
|
||||
for (int i = 0; i < n; i++) {
|
||||
t = cs*V[i][j] + sn*V[i][j+1];
|
||||
V[i][j+1] = -sn*V[i][j] + cs*V[i][j+1];
|
||||
V[i][j] = t;
|
||||
}
|
||||
}
|
||||
t = Maths.hypot(f,g);
|
||||
cs = f/t;
|
||||
sn = g/t;
|
||||
s[j] = t;
|
||||
f = cs*e[j] + sn*s[j+1];
|
||||
s[j+1] = -sn*e[j] + cs*s[j+1];
|
||||
g = sn*e[j+1];
|
||||
e[j+1] = cs*e[j+1];
|
||||
if (wantu && (j < m-1)) {
|
||||
for (int i = 0; i < m; i++) {
|
||||
t = cs*U[i][j] + sn*U[i][j+1];
|
||||
U[i][j+1] = -sn*U[i][j] + cs*U[i][j+1];
|
||||
U[i][j] = t;
|
||||
}
|
||||
}
|
||||
}
|
||||
e[p-2] = f;
|
||||
iter = iter + 1;
|
||||
}
|
||||
break;
|
||||
|
||||
// Convergence.
|
||||
|
||||
case 4: {
|
||||
|
||||
// Make the singular values positive.
|
||||
|
||||
if (s[k] <= 0.0) {
|
||||
s[k] = (s[k] < 0.0 ? -s[k] : 0.0);
|
||||
if (wantv) {
|
||||
for (int i = 0; i <= pp; i++) {
|
||||
V[i][k] = -V[i][k];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Order the singular values.
|
||||
|
||||
while (k < pp) {
|
||||
if (s[k] >= s[k+1]) {
|
||||
break;
|
||||
}
|
||||
double t = s[k];
|
||||
s[k] = s[k+1];
|
||||
s[k+1] = t;
|
||||
if (wantv && (k < n-1)) {
|
||||
for (int i = 0; i < n; i++) {
|
||||
t = V[i][k+1]; V[i][k+1] = V[i][k]; V[i][k] = t;
|
||||
}
|
||||
}
|
||||
if (wantu && (k < m-1)) {
|
||||
for (int i = 0; i < m; i++) {
|
||||
t = U[i][k+1]; U[i][k+1] = U[i][k]; U[i][k] = t;
|
||||
}
|
||||
}
|
||||
k++;
|
||||
}
|
||||
iter = 0;
|
||||
p--;
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* ------------------------
|
||||
Public Methods
|
||||
* ------------------------ */
|
||||
|
||||
/** Return the left singular vectors
|
||||
@return U
|
||||
*/
|
||||
|
||||
public Matrix getU () {
|
||||
return new Matrix(U,m,Math.min(m+1,n));
|
||||
}
|
||||
|
||||
/** Return the right singular vectors
|
||||
@return V
|
||||
*/
|
||||
|
||||
public Matrix getV () {
|
||||
return new Matrix(V,n,n);
|
||||
}
|
||||
|
||||
/** Return the one-dimensional array of singular values
|
||||
@return diagonal of S.
|
||||
*/
|
||||
|
||||
public double[] getSingularValues () {
|
||||
return s;
|
||||
}
|
||||
|
||||
/** Return the diagonal matrix of singular values
|
||||
@return S
|
||||
*/
|
||||
|
||||
public Matrix getS () {
|
||||
Matrix X = new Matrix(n,n);
|
||||
double[][] S = X.getArray();
|
||||
for (int i = 0; i < n; i++) {
|
||||
for (int j = 0; j < n; j++) {
|
||||
S[i][j] = 0.0;
|
||||
}
|
||||
S[i][i] = this.s[i];
|
||||
}
|
||||
return X;
|
||||
}
|
||||
|
||||
/** Two norm
|
||||
@return max(S)
|
||||
*/
|
||||
|
||||
public double norm2 () {
|
||||
return s[0];
|
||||
}
|
||||
|
||||
/** Two norm condition number
|
||||
@return max(S)/min(S)
|
||||
*/
|
||||
|
||||
public double cond () {
|
||||
return s[0]/s[Math.min(m,n)-1];
|
||||
}
|
||||
|
||||
/** Effective numerical matrix rank
|
||||
@return Number of nonnegligible singular values.
|
||||
*/
|
||||
|
||||
public int rank () {
|
||||
double eps = Math.pow(2.0,-52.0);
|
||||
double tol = Math.max(m,n)*s[0]*eps;
|
||||
int r = 0;
|
||||
for (int i = 0; i < s.length; i++) {
|
||||
if (s[i] > tol) {
|
||||
r++;
|
||||
}
|
||||
}
|
||||
return r;
|
||||
}
|
||||
}
|
21
src/wsi/ra/math/Jama/util/Maths.java
Normal file
21
src/wsi/ra/math/Jama/util/Maths.java
Normal file
@@ -0,0 +1,21 @@
|
||||
package wsi.ra.math.Jama.util;
|
||||
|
||||
public class Maths {
|
||||
|
||||
/** sqrt(a^2 + b^2) without under/overflow. **/
|
||||
|
||||
public static double hypot(double a, double b) {
|
||||
double r;
|
||||
double aa = Math.abs(a);
|
||||
double bb = Math.abs(b);
|
||||
if (aa > bb) {
|
||||
r = b/a;
|
||||
r = aa*Math.sqrt(1+r*r);
|
||||
} else if (b != 0) {
|
||||
r = a/b;
|
||||
r = bb*Math.sqrt(1+r*r);
|
||||
} else
|
||||
r = 0.0;
|
||||
return r;
|
||||
}
|
||||
}
|
184
src/wsi/ra/math/RNG.java
Normal file
184
src/wsi/ra/math/RNG.java
Normal file
@@ -0,0 +1,184 @@
|
||||
package wsi.ra.math;
|
||||
/**
|
||||
* Title: JavaEvA
|
||||
* Description:
|
||||
* Copyright: Copyright (c) 2003
|
||||
* Company: University of Tuebingen, Computer Architecture
|
||||
* @author Holger Ulmer, Felix Streichert, Hannes Planatscher
|
||||
* @version: $Revision: 1.1.1.1 $
|
||||
* $Date: 2003/07/03 14:59:40 $
|
||||
* $Author: ulmerh $
|
||||
*/
|
||||
/*==========================================================================*
|
||||
* IMPORTS
|
||||
*==========================================================================*/
|
||||
import java.util.Random;
|
||||
/*==========================================================================*
|
||||
* CLASS DECLARATION
|
||||
*==========================================================================*/
|
||||
/**
|
||||
*
|
||||
*/
|
||||
public class RNG extends Random {
|
||||
private static Random random;
|
||||
private static long randomSeed;
|
||||
/**
|
||||
*
|
||||
*/
|
||||
static {
|
||||
randomSeed=System.currentTimeMillis();
|
||||
random=new Random(randomSeed);
|
||||
}
|
||||
/**
|
||||
*
|
||||
*/
|
||||
public static void setseed(long x) {
|
||||
randomSeed=x;
|
||||
if (x==0)
|
||||
randomSeed=System.currentTimeMillis();
|
||||
if (x==999)
|
||||
return;
|
||||
random=new Random(randomSeed);
|
||||
}
|
||||
/**
|
||||
*
|
||||
*/
|
||||
public static void setRandomseed() {
|
||||
randomSeed=System.currentTimeMillis();
|
||||
random=new Random(randomSeed);
|
||||
}
|
||||
/**
|
||||
*
|
||||
*/
|
||||
public static void setRandom(Random base_random) {
|
||||
random=base_random;
|
||||
}
|
||||
/**
|
||||
*
|
||||
*/
|
||||
public static void setRandomSeed(long new_seed){
|
||||
randomSeed=new_seed;
|
||||
random.setSeed(randomSeed);
|
||||
}
|
||||
/**
|
||||
*
|
||||
*/
|
||||
public static long getRandomSeed() {
|
||||
return randomSeed;
|
||||
}
|
||||
/**
|
||||
*
|
||||
*/
|
||||
public static int randomInt() {
|
||||
return randomInt(0,1);
|
||||
}
|
||||
public static int randomInt(int lo,int hi) {
|
||||
return (Math.abs(random.nextInt())%(hi-lo+1))+lo;
|
||||
}
|
||||
/**
|
||||
*
|
||||
*/
|
||||
public static long randomLong() {
|
||||
return randomLong(0,1);
|
||||
}
|
||||
/**
|
||||
*
|
||||
*/
|
||||
public static long randomLong(long lo,long hi) {
|
||||
return (Math.abs(random.nextLong())%(hi-lo+1))+lo;
|
||||
}
|
||||
/**
|
||||
*
|
||||
*/
|
||||
public static float randomFloat() {
|
||||
return random.nextFloat();
|
||||
}
|
||||
/**
|
||||
*
|
||||
*/
|
||||
public static float randomFloat(float lo,float hi) {
|
||||
return (hi-lo)*random.nextFloat()+lo;
|
||||
}
|
||||
/**
|
||||
*
|
||||
*/
|
||||
public static double randomDouble() {
|
||||
return random.nextDouble();
|
||||
}
|
||||
/**
|
||||
*
|
||||
*/
|
||||
public static double randomDouble(double lo,double hi) {
|
||||
return (hi-lo)*random.nextDouble()+lo;
|
||||
}
|
||||
/**
|
||||
*
|
||||
*/
|
||||
public static double[] randomDoubleArray(double[] lo,double[] hi) {
|
||||
double[] xin = new double[lo.length];
|
||||
for (int i=0;i<lo.length;i++)
|
||||
xin[i] = (hi[i]-lo[i])*random.nextDouble()+lo[i];
|
||||
return xin;
|
||||
}
|
||||
/**
|
||||
*
|
||||
*/
|
||||
public static double[] randomDoubleArray(double lo,double hi,int size) {
|
||||
double[] xin = new double[size];
|
||||
for (int i=0;i<size;i++)
|
||||
xin[i] = (hi-lo)*random.nextDouble()+lo;
|
||||
return xin;
|
||||
}
|
||||
|
||||
/**
|
||||
*
|
||||
*/
|
||||
public static double[] randomDoubleArray(double[] lo,double[] hi,double[] xin) {
|
||||
for (int i=0;i<lo.length;i++)
|
||||
xin[i] = (hi[i]-lo[i])*random.nextDouble()+lo[i];
|
||||
return xin;
|
||||
}
|
||||
/**
|
||||
*
|
||||
*/
|
||||
public static boolean randomBoolean() {
|
||||
return (randomInt()==1);
|
||||
}
|
||||
/**
|
||||
*
|
||||
*/
|
||||
public static int randomBit() {
|
||||
return randomInt();
|
||||
}
|
||||
/**
|
||||
*
|
||||
*/
|
||||
public static boolean flipCoin(double p) {
|
||||
return (randomDouble()<p ? true : false);
|
||||
}
|
||||
/**
|
||||
*
|
||||
*/
|
||||
public static float gaussianFloat(float dev) {
|
||||
return (float)random.nextGaussian()*dev;
|
||||
}
|
||||
/**
|
||||
*
|
||||
*/
|
||||
public static double gaussianDouble(double dev) {
|
||||
return random.nextGaussian()*dev;
|
||||
}
|
||||
/**
|
||||
*
|
||||
*/
|
||||
public static float exponentialFloat(float mean) {
|
||||
return (float)(-mean*Math.log(randomDouble()));
|
||||
}
|
||||
/**
|
||||
*
|
||||
*/
|
||||
public static double exponentialDouble(double mean) {
|
||||
return -mean*Math.log(randomDouble());
|
||||
}
|
||||
}
|
||||
|
1364
src/wsi/ra/math/SpecialFunction.java
Normal file
1364
src/wsi/ra/math/SpecialFunction.java
Normal file
File diff suppressed because it is too large
Load Diff
52
src/wsi/ra/math/interpolation/AbstractDataModifier.java
Normal file
52
src/wsi/ra/math/interpolation/AbstractDataModifier.java
Normal file
@@ -0,0 +1,52 @@
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// Filename: $RCSfile: AbstractDataModifier.java,v $
|
||||
// Purpose: Some interpolation stuff.
|
||||
// Language: Java
|
||||
// Compiler: JDK 1.4
|
||||
// Authors: Joerg K. Wegner
|
||||
// Version: $Revision: 1.1 $
|
||||
// $Date: 2003/07/22 19:24:58 $
|
||||
// $Author: wegnerj $
|
||||
//
|
||||
// Copyright (c) Dept. Computer Architecture, University of Tuebingen, Germany
|
||||
//
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
package wsi.ra.math.interpolation;
|
||||
|
||||
/*==========================================================================*
|
||||
* IMPORTS
|
||||
*==========================================================================*/
|
||||
|
||||
/*==========================================================================*
|
||||
* CLASS DECLARATION
|
||||
*==========================================================================*/
|
||||
|
||||
/**
|
||||
* The minimal set of functions which should implemented in a data modifier for
|
||||
* <code>AbstractDataSet</code>.
|
||||
*/
|
||||
public abstract class AbstractDataModifier
|
||||
{
|
||||
|
||||
/*-------------------------------------------------------------------------*
|
||||
* abstract methods
|
||||
*-------------------------------------------------------------------------*/
|
||||
|
||||
/**
|
||||
* Modifies the X data.
|
||||
*/
|
||||
public abstract void modifyX(double[] setX);
|
||||
/**
|
||||
* Modifies the Y data.
|
||||
*/
|
||||
public abstract void modifyY(double[] setY);
|
||||
/**
|
||||
* Modifies the data.
|
||||
*/
|
||||
public abstract void modify(double[] setX, double[] setY);
|
||||
}
|
||||
|
||||
/****************************************************************************
|
||||
* END OF FILE
|
||||
****************************************************************************/
|
116
src/wsi/ra/math/interpolation/AbstractDataSet.java
Normal file
116
src/wsi/ra/math/interpolation/AbstractDataSet.java
Normal file
@@ -0,0 +1,116 @@
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// Filename: $RCSfile: AbstractDataSet.java,v $
|
||||
// Purpose: Some interpolation stuff.
|
||||
// Language: Java
|
||||
// Compiler: JDK 1.4
|
||||
// Authors: Joerg K. Wegner
|
||||
// Version: $Revision: 1.1 $
|
||||
// $Date: 2003/07/22 19:25:04 $
|
||||
// $Author: wegnerj $
|
||||
//
|
||||
// Copyright (c) Dept. Computer Architecture, University of Tuebingen, Germany
|
||||
//
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
package wsi.ra.math.interpolation;
|
||||
|
||||
/*==========================================================================*
|
||||
* IMPORTS
|
||||
*==========================================================================*/
|
||||
|
||||
/*==========================================================================*
|
||||
* CLASS DECLARATION
|
||||
*==========================================================================*/
|
||||
|
||||
public abstract class AbstractDataSet
|
||||
{
|
||||
/*-------------------------------------------------------------------------*
|
||||
* public member variables
|
||||
*-------------------------------------------------------------------------*/
|
||||
|
||||
/*--------------------------------------------------------------o-----------*
|
||||
* protected member variables
|
||||
*-------------------------------------------------------------------------*/
|
||||
/**
|
||||
* double array of X data.
|
||||
*
|
||||
* @see #yDoubleData
|
||||
*/
|
||||
protected double[] xDoubleData = { -1, 1 };
|
||||
/**
|
||||
* double array of Y data.
|
||||
*
|
||||
* @see #xDoubleData
|
||||
*/
|
||||
protected double[] yDoubleData = { 1, 1 };
|
||||
|
||||
/*-------------------------------------------------------------------------*
|
||||
* abstract methods
|
||||
*-------------------------------------------------------------------------*/
|
||||
|
||||
/**
|
||||
* Returns the length of the data set
|
||||
* @return the length of the data set
|
||||
*/
|
||||
public int getLength()
|
||||
{
|
||||
return xDoubleData.length;
|
||||
}
|
||||
/**
|
||||
* Returns an array of the X data
|
||||
* @return the array of the X data
|
||||
*/
|
||||
public double[] getXData()
|
||||
{
|
||||
return xDoubleData;
|
||||
}
|
||||
/**
|
||||
* Returns an array of the Y data
|
||||
* @return the array of the Y data
|
||||
*/
|
||||
public double[] getYData()
|
||||
{
|
||||
return yDoubleData;
|
||||
}
|
||||
/**
|
||||
* Returns the X label of the data set
|
||||
* @return the X label of the data set
|
||||
*/
|
||||
public abstract String getXLabel();
|
||||
/**
|
||||
* Returns the Y label of the data set
|
||||
* @return the Y label of the data set
|
||||
*/
|
||||
public abstract String getYLabel();
|
||||
|
||||
/**
|
||||
* Modifies the X data.
|
||||
*
|
||||
* @param the data modifier
|
||||
*/
|
||||
public void modifyXData(AbstractDataModifier modifier)
|
||||
{
|
||||
modifier.modifyX(xDoubleData);
|
||||
}
|
||||
/**
|
||||
* Modifies the Y data.
|
||||
*
|
||||
* @param the data modifier
|
||||
*/
|
||||
public void modifyYData(AbstractDataModifier modifier)
|
||||
{
|
||||
modifier.modifyY(yDoubleData);
|
||||
}
|
||||
/**
|
||||
* Modifies the data.
|
||||
*
|
||||
* @param the data modifier
|
||||
*/
|
||||
public void modifyData(AbstractDataModifier modifier)
|
||||
{
|
||||
modifier.modify(xDoubleData, yDoubleData);
|
||||
}
|
||||
}
|
||||
/****************************************************************************
|
||||
* END OF FILE
|
||||
****************************************************************************/
|
100
src/wsi/ra/math/interpolation/BasicDataSet.java
Normal file
100
src/wsi/ra/math/interpolation/BasicDataSet.java
Normal file
@@ -0,0 +1,100 @@
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// Filename: $RCSfile: BasicDataSet.java,v $
|
||||
// Purpose: Some interpolation stuff.
|
||||
// Language: Java
|
||||
// Compiler: JDK 1.4
|
||||
// Authors: Joerg K. Wegner
|
||||
// Version: $Revision: 1.1 $
|
||||
// $Date: 2003/07/22 19:25:11 $
|
||||
// $Author: wegnerj $
|
||||
//
|
||||
// Copyright (c) Dept. Computer Architecture, University of Tuebingen, Germany
|
||||
//
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
package wsi.ra.math.interpolation;
|
||||
|
||||
import wsi.ra.sort.XYDoubleArray;
|
||||
|
||||
/*==========================================================================*
|
||||
* IMPORTS
|
||||
*==========================================================================*/
|
||||
|
||||
/**
|
||||
* The minimum wrapper class for an <code>AbstractDataSet</code>.
|
||||
*/
|
||||
public class BasicDataSet extends AbstractDataSet
|
||||
{
|
||||
/*-------------------------------------------------------------------------*
|
||||
* protected member variables
|
||||
*-------------------------------------------------------------------------*/
|
||||
protected int dataType = -1;
|
||||
protected String xLabel = null;
|
||||
protected String yLabel = null;
|
||||
|
||||
/*------------------------------------------------------------------------*
|
||||
* constructor
|
||||
*------------------------------------------------------------------------*/
|
||||
public BasicDataSet()
|
||||
{
|
||||
this(null, null, null, null);
|
||||
}
|
||||
|
||||
public BasicDataSet(XYDoubleArray data)
|
||||
{
|
||||
this(data.x, data.y, null, null);
|
||||
}
|
||||
|
||||
public BasicDataSet(XYDoubleArray data, String xLabel, String yLabel)
|
||||
{
|
||||
this(data.x, data.y, xLabel, yLabel);
|
||||
}
|
||||
|
||||
public BasicDataSet(
|
||||
double[] xDoubleData,
|
||||
double[] yDoubleData,
|
||||
int dataType)
|
||||
{
|
||||
this(xDoubleData, yDoubleData, null, null);
|
||||
}
|
||||
|
||||
public BasicDataSet(
|
||||
double[] xDoubleData,
|
||||
double[] yDoubleData,
|
||||
String xLabel,
|
||||
String yLabel)
|
||||
{
|
||||
this.xDoubleData = xDoubleData;
|
||||
this.yDoubleData = yDoubleData;
|
||||
this.xLabel = xLabel;
|
||||
this.yLabel = yLabel;
|
||||
}
|
||||
|
||||
/*-------------------------------------------------------------------------*
|
||||
* public methods
|
||||
*-------------------------------------------------------------------------*/
|
||||
|
||||
public int getDataType()
|
||||
{
|
||||
return dataType;
|
||||
}
|
||||
|
||||
public String getXLabel()
|
||||
{
|
||||
return xLabel;
|
||||
}
|
||||
|
||||
public String getYLabel()
|
||||
{
|
||||
return yLabel;
|
||||
}
|
||||
|
||||
public String getAdditionalInformation(String parm1)
|
||||
{
|
||||
return new String();
|
||||
}
|
||||
}
|
||||
|
||||
/****************************************************************************
|
||||
* END OF FILE
|
||||
****************************************************************************/
|
44
src/wsi/ra/math/interpolation/InterpolationException.java
Normal file
44
src/wsi/ra/math/interpolation/InterpolationException.java
Normal file
@@ -0,0 +1,44 @@
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// Filename: $RCSfile: InterpolationException.java,v $
|
||||
// Purpose: Some interpolation stuff.
|
||||
// Language: Java
|
||||
// Compiler: JDK 1.4
|
||||
// Authors: Joerg K. Wegner
|
||||
// Version: $Revision: 1.1 $
|
||||
// $Date: 2003/07/22 19:25:17 $
|
||||
// $Author: wegnerj $
|
||||
//
|
||||
// Copyright (c) Dept. Computer Architecture, University of Tuebingen, Germany
|
||||
//
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
package wsi.ra.math.interpolation;
|
||||
|
||||
/*==========================================================================*
|
||||
* IMPORTS
|
||||
*==========================================================================*/
|
||||
|
||||
|
||||
/*==========================================================================*
|
||||
* CLASS DECLARATION
|
||||
*==========================================================================*/
|
||||
|
||||
/**
|
||||
* Exception for interpolation error.
|
||||
*/
|
||||
public class InterpolationException extends Exception
|
||||
{
|
||||
|
||||
public InterpolationException()
|
||||
{
|
||||
super();
|
||||
}
|
||||
public InterpolationException(String s)
|
||||
{
|
||||
super(s);
|
||||
}
|
||||
}
|
||||
|
||||
/****************************************************************************
|
||||
* END OF FILE
|
||||
****************************************************************************/
|
573
src/wsi/ra/math/interpolation/LinearInterpolation.java
Normal file
573
src/wsi/ra/math/interpolation/LinearInterpolation.java
Normal file
@@ -0,0 +1,573 @@
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// Filename: $RCSfile: LinearInterpolation.java,v $
|
||||
// Purpose: Some interpolation stuff.
|
||||
// Language: Java
|
||||
// Compiler: JDK 1.4
|
||||
// Authors: Joerg K. Wegner
|
||||
// Original author: Charles S. Stanton
|
||||
// Version: $Revision: 1.1 $
|
||||
// $Date: 2003/07/22 19:25:23 $
|
||||
// $Author: wegnerj $
|
||||
//
|
||||
// Copyright (c) Dept. Computer Architecture, University of Tuebingen, Germany
|
||||
//
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
package wsi.ra.math.interpolation;
|
||||
|
||||
/*==========================================================================*
|
||||
* IMPORTS
|
||||
*==========================================================================*/
|
||||
|
||||
//import cern.jet.stat.*;
|
||||
|
||||
/**
|
||||
* Defines the routines for the spline interpolation of data.
|
||||
*/
|
||||
public class LinearInterpolation
|
||||
{
|
||||
AbstractDataSet abstractDataSet = null;
|
||||
private double[] x, y;
|
||||
//vectors of x,y
|
||||
private double sumX = 0;
|
||||
private double sumY = 0;
|
||||
private double sumXY = 0;
|
||||
private double sumXsquared = 0;
|
||||
private double sumYsquared = 0;
|
||||
private double Sxx, Sxy, Syy, n;
|
||||
private double a = 0, b = 0;
|
||||
//coefficients of regression
|
||||
private int dataLength;
|
||||
private double[][] residual;
|
||||
// residual[0][i] = x[i], residual[1][i]= residual
|
||||
private double maxAbsoluteResidual = 0.0;
|
||||
private double SSR = 0.0;
|
||||
//regression sum of squares
|
||||
private double SSE = 0.0;
|
||||
//error sum of squares
|
||||
private double minX = Double.POSITIVE_INFINITY;
|
||||
private double maxX = Double.NEGATIVE_INFINITY;
|
||||
private double minY = Double.POSITIVE_INFINITY;
|
||||
private double maxY = Double.NEGATIVE_INFINITY;
|
||||
|
||||
//MISC
|
||||
String xName, yName;
|
||||
double aCILower, aCIUpper, bCILower, bCIUpper; //confidence interval
|
||||
double t, bSE, aSE;
|
||||
double MSE, F;
|
||||
static double[] t025 =
|
||||
{
|
||||
Double.NaN,
|
||||
12.706,
|
||||
4.303,
|
||||
3.182,
|
||||
2.776,
|
||||
2.571,
|
||||
2.447,
|
||||
2.365,
|
||||
2.306,
|
||||
2.262,
|
||||
2.228,
|
||||
2.201,
|
||||
2.179,
|
||||
2.160,
|
||||
2.145,
|
||||
2.131,
|
||||
2.120,
|
||||
2.110,
|
||||
2.101,
|
||||
2.093,
|
||||
2.086,
|
||||
2.080,
|
||||
2.075,
|
||||
2.069,
|
||||
2.064,
|
||||
2.060,
|
||||
2.056,
|
||||
2.052,
|
||||
2.048,
|
||||
2.045,
|
||||
1.960 };
|
||||
|
||||
/*------------------------------------------------------------------------*
|
||||
* constructor
|
||||
*------------------------------------------------------------------------*/
|
||||
/**
|
||||
* Initializes this class.
|
||||
*/
|
||||
public LinearInterpolation() throws InterpolationException
|
||||
{
|
||||
this.abstractDataSet = null;
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructor for regression calculator.
|
||||
*
|
||||
* @param x is the array of x data
|
||||
* @param y is the array of y data
|
||||
*/
|
||||
public LinearInterpolation(double[] x, double[] y)
|
||||
{
|
||||
this.x = x;
|
||||
this.y = y;
|
||||
if (x.length != y.length)
|
||||
{
|
||||
System.out.println("x, y vectors must be of same length");
|
||||
}
|
||||
else
|
||||
{
|
||||
dataLength = x.length;
|
||||
doStatistics();
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* Initializes this class and calculates the second derivative of the spline.
|
||||
*
|
||||
* @param abstractDataSet the <code>AbstractDataSet</code>
|
||||
*/
|
||||
public LinearInterpolation(AbstractDataSet abstractDataSet)
|
||||
throws InterpolationException
|
||||
{
|
||||
this.setAbstractDataSet(abstractDataSet);
|
||||
}
|
||||
|
||||
public void setAbstractDataSet(AbstractDataSet abstractDataSet)
|
||||
throws InterpolationException
|
||||
{
|
||||
this.abstractDataSet = abstractDataSet;
|
||||
x = abstractDataSet.getXData();
|
||||
y = abstractDataSet.getYData();
|
||||
if (x.length != y.length)
|
||||
{
|
||||
System.out.println("x, y vectors must be of same length");
|
||||
}
|
||||
else
|
||||
{
|
||||
dataLength = x.length;
|
||||
doStatistics();
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Find the p value for a given value of F.
|
||||
* Requires the COLT high performance library:
|
||||
* http://hoschek.home.cern.ch/hoschek/colt/
|
||||
*
|
||||
* @param fValue the value for the CDF
|
||||
* @return The P value
|
||||
*/
|
||||
// public double getP(double fValue) {
|
||||
// double answer;
|
||||
// double y1;
|
||||
// double y2;
|
||||
// //nu1 = 1;
|
||||
// //x2 =1
|
||||
// double nu2 = n - 2;
|
||||
// y1 = nu2 / (nu2 + fValue);
|
||||
// y2 = 0.0;
|
||||
// answer = Gamma.incompleteBeta(nu2 / 2.0, 1 / 2.0, y1)
|
||||
// - Gamma.incompleteBeta(nu2 / 2.0, 1 / 2.0, y2);
|
||||
// return answer;
|
||||
// }
|
||||
|
||||
/*
|
||||
* Here are the accessor methods
|
||||
*
|
||||
*/
|
||||
/**
|
||||
* Gets the intercept of the regression line.
|
||||
*
|
||||
* @return The intercept.
|
||||
*/
|
||||
public double getIntercept()
|
||||
{
|
||||
return a;
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the Slope of the regression line.
|
||||
*
|
||||
* @return The slope.
|
||||
*/
|
||||
public double getSlope()
|
||||
{
|
||||
return b;
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the residuals of the regression.
|
||||
*
|
||||
* @return The residuals.
|
||||
*/
|
||||
public double[][] getResiduals()
|
||||
{
|
||||
return residual;
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the x data for the regression.
|
||||
*
|
||||
* @return The array of x values.
|
||||
*/
|
||||
public double[] getDataX()
|
||||
{
|
||||
return x;
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the y data for the regression.
|
||||
*
|
||||
* @return The array of y values.
|
||||
*/
|
||||
public double[] getDataY()
|
||||
{
|
||||
return y;
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the minimum of the x values.
|
||||
*
|
||||
* @return The minimum.
|
||||
*/
|
||||
public double getMinX()
|
||||
{
|
||||
return minX;
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the maximum of the x values.
|
||||
*
|
||||
* @return The maximum.
|
||||
*/
|
||||
public double getMaxX()
|
||||
{
|
||||
return maxX;
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the minimum of the y values.
|
||||
*
|
||||
* @return The minumum.
|
||||
*/
|
||||
public double getMinY()
|
||||
{
|
||||
return minY;
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the maximum of the y values.
|
||||
*
|
||||
* @return The maximum.
|
||||
*/
|
||||
public double getMaxY()
|
||||
{
|
||||
return maxY;
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the maximum absolute residual.
|
||||
*
|
||||
* @return The maximum.
|
||||
*/
|
||||
public double getMaxAbsoluteResidual()
|
||||
{
|
||||
return maxAbsoluteResidual;
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the sum of the square x deviations from mean of x.
|
||||
*
|
||||
* @return The Sxx value
|
||||
*/
|
||||
public double getSxx()
|
||||
{
|
||||
return Sxx;
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the sum of the square y deviations from mean of y.
|
||||
*
|
||||
* @return The Syy value
|
||||
*/
|
||||
public double getSyy()
|
||||
{
|
||||
return Syy;
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets SSR = Sxy * Sxy / Sxx;
|
||||
*
|
||||
* @return The SSR value
|
||||
*/
|
||||
public double getSSR()
|
||||
{
|
||||
return SSR;
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets SSE = Syy - SSR.
|
||||
*
|
||||
* @return The SSE value
|
||||
*/
|
||||
public double getSSE()
|
||||
{
|
||||
return SSE;
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the mean square error MSE.
|
||||
*
|
||||
* @return The MSE value
|
||||
*/
|
||||
public double getMSE()
|
||||
{
|
||||
return SSE / (n - 2);
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the mean XBar of x.
|
||||
*
|
||||
* @return The XBar value
|
||||
*/
|
||||
public double getXBar()
|
||||
{
|
||||
return sumX / n;
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the mean YBar of y.
|
||||
*
|
||||
* @return The YBar value
|
||||
*/
|
||||
public double getYBar()
|
||||
{
|
||||
return sumY / n;
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the sample size.
|
||||
*
|
||||
* @return The sample size.
|
||||
*/
|
||||
public int getDataLength()
|
||||
{
|
||||
return x.length;
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the Pearson R statistic of the regression.
|
||||
*
|
||||
* @return The PearsonR value
|
||||
*/
|
||||
public double getPearsonR()
|
||||
{
|
||||
return Sxy / Math.sqrt(Sxx * Syy);
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the sum of the x squared values.
|
||||
*
|
||||
* @return The sum of the x squared values.
|
||||
*/
|
||||
public double getSumXSquared()
|
||||
{
|
||||
return sumXsquared;
|
||||
}
|
||||
|
||||
/**
|
||||
* reset data to 0
|
||||
*/
|
||||
public void reset()
|
||||
{
|
||||
x = new double[0];
|
||||
y = new double[0];
|
||||
dataLength = 0;
|
||||
n = 0.0;
|
||||
residual = new double[0][0];
|
||||
|
||||
sumX = 0;
|
||||
sumXsquared = 0;
|
||||
sumY = 0;
|
||||
sumYsquared = 0;
|
||||
sumXY = 0;
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* Adds a new point to the regression (for interactive use).
|
||||
*
|
||||
* @param xValue The new x value
|
||||
* @param yValue The new y value
|
||||
*/
|
||||
public void addPoint(double xValue, double yValue)
|
||||
{
|
||||
dataLength++;
|
||||
double[] xNew = new double[dataLength];
|
||||
double[] yNew = new double[dataLength];
|
||||
System.arraycopy(x, 0, xNew, 0, dataLength - 1);
|
||||
System.arraycopy(y, 0, yNew, 0, dataLength - 1);
|
||||
xNew[dataLength - 1] = xValue;
|
||||
yNew[dataLength - 1] = yValue;
|
||||
x = xNew;
|
||||
y = yNew;
|
||||
updateStatistics(xValue, yValue);
|
||||
}
|
||||
|
||||
private void doStatistics()
|
||||
{
|
||||
//Find sum of squares for x,y and sum of xy
|
||||
for (int i = 0; i < dataLength; i++)
|
||||
{
|
||||
minX = Math.min(minX, x[i]);
|
||||
maxX = Math.max(maxX, x[i]);
|
||||
minY = Math.min(minY, y[i]);
|
||||
maxY = Math.max(maxY, y[i]);
|
||||
sumX += x[i];
|
||||
sumY += y[i];
|
||||
sumXsquared += x[i] * x[i];
|
||||
sumYsquared += y[i] * y[i];
|
||||
sumXY += x[i] * y[i];
|
||||
}
|
||||
//Caculate regression coefficients
|
||||
n = (double) dataLength;
|
||||
Sxx = sumXsquared - sumX * sumX / n;
|
||||
Syy = sumYsquared - sumY * sumY / n;
|
||||
Sxy = sumXY - sumX * sumY / n;
|
||||
b = Sxy / Sxx;
|
||||
a = (sumY - b * sumX) / n;
|
||||
SSR = Sxy * Sxy / Sxx;
|
||||
SSE = Syy - SSR;
|
||||
calculateResiduals();
|
||||
}
|
||||
|
||||
private void calculateResiduals()
|
||||
{
|
||||
residual = new double[2][dataLength];
|
||||
maxAbsoluteResidual = 0.0;
|
||||
for (int i = 0; i < dataLength; i++)
|
||||
{
|
||||
residual[0][i] = x[i];
|
||||
residual[1][i] = y[i] - (a + b * x[i]);
|
||||
maxAbsoluteResidual =
|
||||
Math.max(maxAbsoluteResidual, Math.abs(y[i] - (a + b * x[i])));
|
||||
}
|
||||
}
|
||||
|
||||
//update statistics for a single additional data point
|
||||
private void updateStatistics(double xValue, double yValue)
|
||||
{
|
||||
//Find sum of squares for x,y and sum of xy
|
||||
n++;
|
||||
sumX += xValue;
|
||||
sumY += yValue;
|
||||
sumXsquared += xValue * xValue;
|
||||
sumYsquared += yValue * yValue;
|
||||
sumXY += xValue * yValue;
|
||||
//Caculate regression coefficients
|
||||
n = (double) dataLength;
|
||||
Sxx = sumXsquared - sumX * sumX / n;
|
||||
Syy = sumYsquared - sumY * sumY / n;
|
||||
Sxy = sumXY - sumX * sumY / n;
|
||||
b = Sxy / Sxx;
|
||||
a = (sumY - b * sumX) / n;
|
||||
SSR = Sxy * Sxy / Sxx;
|
||||
SSE = Syy - SSR;
|
||||
calculateResiduals();
|
||||
}
|
||||
|
||||
/**
|
||||
* regression line y = a + bx.
|
||||
*
|
||||
* @param x
|
||||
* @return double
|
||||
* @throws InterpolationException
|
||||
*/
|
||||
public double getY(double x) throws InterpolationException
|
||||
{
|
||||
return a + b * x;
|
||||
}
|
||||
|
||||
public String toString()
|
||||
{
|
||||
StringBuffer sb = new StringBuffer(1000);
|
||||
|
||||
sb.append("Regression Statistics for " + yName + " = a + b*" + xName);
|
||||
sb.append("");
|
||||
sb.append("Sample Statistics");
|
||||
int n = this.getDataLength();
|
||||
sb.append("Sample size n = " + n);
|
||||
sb.append("Mean of " + yName + " Y bar = " + this.getYBar());
|
||||
sb.append("s_Y");
|
||||
sb.append("= " + Math.sqrt(this.getSyy() / ((float) (n - 1))));
|
||||
sb.append("Pearson correlation R = " + this.getPearsonR());
|
||||
sb.append("");
|
||||
sb.append("Coefficient Estimates");
|
||||
a = this.getIntercept();
|
||||
b = this.getSlope();
|
||||
sb.append("a = " + a);
|
||||
sb.append("b = " + b);
|
||||
sb.append("");
|
||||
|
||||
sb.append("95% Confidence Intervals");
|
||||
|
||||
if (n > 32)
|
||||
{
|
||||
t = t025[30];
|
||||
}
|
||||
else if (n > 2)
|
||||
{
|
||||
t = t025[n - 2];
|
||||
}
|
||||
else
|
||||
{
|
||||
t = Double.NaN;
|
||||
}
|
||||
MSE = this.getMSE();
|
||||
if (n > 2)
|
||||
{
|
||||
bSE = Math.sqrt(MSE / this.getSxx());
|
||||
}
|
||||
else
|
||||
{
|
||||
bSE = Double.NaN;
|
||||
}
|
||||
aSE = bSE * Math.sqrt(this.getSumXSquared() / n);
|
||||
aCILower = a - t * aSE;
|
||||
aCIUpper = a + t * aSE;
|
||||
sb.append("a : (" + aCILower + ", " + aCIUpper + ")");
|
||||
bCILower = b - t * bSE;
|
||||
bCIUpper = b + t * bSE;
|
||||
sb.append("b : (" + bCILower + ", " + bCIUpper + ")");
|
||||
sb.append("");
|
||||
sb.append("Analysis of Variance");
|
||||
sb.append("Source Degrees Freedom Sum of Squares");
|
||||
sb.append("");
|
||||
SSR = this.getSSR();
|
||||
//allow one degree of freedom for mean
|
||||
sb.append(
|
||||
"model 1 "
|
||||
+ SSR);
|
||||
sb.append(
|
||||
"error "
|
||||
+ (n - 2)
|
||||
+ " "
|
||||
+ this.getSSE());
|
||||
sb.append(
|
||||
"total(corrected) "
|
||||
+ (n - 1)
|
||||
+ " "
|
||||
+ this.getSyy());
|
||||
sb.append("");
|
||||
sb.append("MSE =" + MSE);
|
||||
F = SSR / MSE;
|
||||
sb.append("F = " + F + " ");
|
||||
//sb.append("p = " + this.getP(F));
|
||||
|
||||
return sb.toString();
|
||||
}
|
||||
}
|
||||
/****************************************************************************
|
||||
* END OF FILE
|
||||
****************************************************************************/
|
453
src/wsi/ra/math/interpolation/PolyInterpolation.java
Normal file
453
src/wsi/ra/math/interpolation/PolyInterpolation.java
Normal file
@@ -0,0 +1,453 @@
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// Filename: $RCSfile: PolyInterpolation.java,v $
|
||||
// Purpose: Some interpolation stuff.
|
||||
// Language: Java
|
||||
// Compiler: JDK 1.4
|
||||
// Authors: Joerg K. Wegner
|
||||
// Version: $Revision: 1.1 $
|
||||
// $Date: 2003/07/22 19:25:30 $
|
||||
// $Author: wegnerj $
|
||||
//
|
||||
// Copyright (c) Dept. Computer Architecture, University of Tuebingen, Germany
|
||||
//
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
package wsi.ra.math.interpolation;
|
||||
|
||||
/*==========================================================================*
|
||||
* IMPORTS
|
||||
*==========================================================================*/
|
||||
|
||||
/**
|
||||
* Defines the routines for the interpolation of data.
|
||||
*/
|
||||
public class PolyInterpolation
|
||||
{
|
||||
AbstractDataSet abstractDataSet = null;
|
||||
boolean sloppy = true;
|
||||
double[] polynomialCoefficients = null;
|
||||
|
||||
/*------------------------------------------------------------------------*
|
||||
* constructor
|
||||
*------------------------------------------------------------------------*/
|
||||
/**
|
||||
* Initializes this class.
|
||||
*/
|
||||
public PolyInterpolation() throws InterpolationException
|
||||
{
|
||||
this.abstractDataSet = null;
|
||||
sloppy = true;
|
||||
polynomialCoefficients = null;
|
||||
}
|
||||
|
||||
/**
|
||||
* Initializes this class and calculates the coefficients of the polynom.
|
||||
*
|
||||
* @param abstractDataSet the <code>AbstractDataSet</code>
|
||||
*/
|
||||
public PolyInterpolation(AbstractDataSet abstractDataSet)
|
||||
throws InterpolationException
|
||||
{
|
||||
this.abstractDataSet = abstractDataSet;
|
||||
sloppy = true;
|
||||
this.polynomialCoefficients = calculatePolynomialCoefficients();
|
||||
}
|
||||
|
||||
/**
|
||||
* Initializes this class and calculates the coefficients of the polynom.
|
||||
*
|
||||
* @param abstractDataSet the <code>AbstractDataSet</code>
|
||||
* @param sloppy if <code>true</code> Neville's algorithm which is used in the
|
||||
* <code>polynomialInterpolation</code>-routines does only print a
|
||||
* warning message on the screen and does not throw an
|
||||
* <code>Exception</code> if two x values are identical.
|
||||
*/
|
||||
public PolyInterpolation(AbstractDataSet abstractDataSet, boolean sloppy)
|
||||
throws InterpolationException
|
||||
{
|
||||
this.abstractDataSet = abstractDataSet;
|
||||
this.sloppy = sloppy;
|
||||
this.polynomialCoefficients = calculatePolynomialCoefficients();
|
||||
}
|
||||
|
||||
/**
|
||||
* Sets the new <code>AbstractDataSet</code> and calculates the coefficients
|
||||
* of the polynom.
|
||||
*
|
||||
* @param abstractDataSet the <code>AbstractDataSet</code>
|
||||
*/
|
||||
public void setAbstractDataSet(AbstractDataSet abstractDataSet)
|
||||
throws InterpolationException
|
||||
{
|
||||
this.abstractDataSet = abstractDataSet;
|
||||
this.polynomialCoefficients = calculatePolynomialCoefficients();
|
||||
}
|
||||
|
||||
/**
|
||||
* Uses the polynom with the calculated coefficients to calculate the
|
||||
* <code>y</code> value. This algorithm was taken from:<br>
|
||||
* <a href="http://www.ulib.org/webRoot/Books/Numerical_Recipes/" target="_top">
|
||||
* William H. Press, Saul A. Teukolosky, William T. Vetterling, Brian P. Flannery,
|
||||
* "Numerical Recipes in C - The Art of Scientific Computing", Second Edition,
|
||||
* Cambridge University Press,
|
||||
* ISBN 0-521-43108-5,
|
||||
* chapter 5, pages 173-176.</a><br>
|
||||
* The Neville's algorithm which is used in the <code>polynomialInterpolation</code>-
|
||||
* routines returns also the error of this interpolated point.
|
||||
*
|
||||
* @param x the x value
|
||||
* @return the interpolated y value
|
||||
* @see #polynomialInterpolation(double)
|
||||
* @see #polynomialInterpolation(AbstractDataSet, double)
|
||||
* @see #polynomialInterpolation(double[], double[], double)
|
||||
* @see #getYandDerivatives(double, int)
|
||||
* @see #calculatePolynomialCoefficients()
|
||||
* @see #calculatePolynomialCoefficients(AbstractDataSet)
|
||||
* @see #calculatePolynomialCoefficients(double[], double[])
|
||||
*/
|
||||
|
||||
public double getY(double x)
|
||||
{
|
||||
int n = polynomialCoefficients.length - 1;
|
||||
double y = polynomialCoefficients[n];
|
||||
for (int j = n - 1; j >= 0; j--)
|
||||
y = y * x + polynomialCoefficients[j];
|
||||
|
||||
return y;
|
||||
}
|
||||
|
||||
/**
|
||||
* Uses the polynom with the calculated coefficients to calculate the
|
||||
* <code>y</code> value and the derivatives at the point <code>x</code>,
|
||||
* <code>y</code>. This algorithm was taken from:<br>
|
||||
* <a href="http://www.ulib.org/webRoot/Books/Numerical_Recipes/" target="_top">
|
||||
* William H. Press, Saul A. Teukolosky, William T. Vetterling, Brian P. Flannery,
|
||||
* "Numerical Recipes in C - The Art of Scientific Computing", Second Edition,
|
||||
* Cambridge University Press,
|
||||
* ISBN 0-521-43108-5,
|
||||
* chapter 5, pages 173-176.</a><br>
|
||||
* The Neville's algorithm which is used in the <code>polynomialInterpolation</code>-
|
||||
* routines returns also the error of this interpolated point.
|
||||
*
|
||||
* @param x the x value
|
||||
* @param ndDerivateNumber the number of the calculated derivatives
|
||||
* @return the interpolated y value at ...[0], the 1st derivativ value at
|
||||
* ...[1], the 2nd derivativ at ...[2] and so on ...
|
||||
* @see #getY(double)
|
||||
* @see #polynomialInterpolation(double)
|
||||
* @see #polynomialInterpolation(AbstractDataSet, double)
|
||||
* @see #polynomialInterpolation(double[], double[], double)
|
||||
* @see #calculatePolynomialCoefficients()
|
||||
* @see #calculatePolynomialCoefficients(AbstractDataSet)
|
||||
* @see #calculatePolynomialCoefficients(double[], double[])
|
||||
*/
|
||||
public double[] getYandDerivatives(double x, int ndDerivateNumber)
|
||||
throws InterpolationException
|
||||
{
|
||||
if (ndDerivateNumber < 0)
|
||||
throw new InterpolationException("Negative derivative numbers make no sense.");
|
||||
else if (ndDerivateNumber == 0)
|
||||
{
|
||||
double[] pd = new double[1];
|
||||
pd[0] = getY(x);
|
||||
return pd;
|
||||
}
|
||||
|
||||
int nnd, j, i;
|
||||
int nc = polynomialCoefficients.length - 1;
|
||||
double[] pd = new double[ndDerivateNumber + 1];
|
||||
double cnst = 1.0;
|
||||
|
||||
pd[0] = polynomialCoefficients[nc];
|
||||
for (j = 1; j <= ndDerivateNumber; j++)
|
||||
pd[j] = 0.0;
|
||||
for (i = nc - 1; i >= 0; i--)
|
||||
{
|
||||
nnd = (ndDerivateNumber < (nc - i) ? ndDerivateNumber : nc - i);
|
||||
for (j = nnd; j >= 1; j--)
|
||||
pd[j] = pd[j] * x + pd[j - 1];
|
||||
pd[0] = pd[0] * x + polynomialCoefficients[i];
|
||||
}
|
||||
for (i = 2; i <= ndDerivateNumber; i++)
|
||||
{
|
||||
cnst *= i;
|
||||
pd[i] *= cnst;
|
||||
}
|
||||
|
||||
return pd;
|
||||
}
|
||||
|
||||
/**
|
||||
* Neville's interpolation algorithm. This algorithm was taken from:<br>
|
||||
* <a href="http://www.ulib.org/webRoot/Books/Numerical_Recipes/" target="_top">
|
||||
* William H. Press, Saul A. Teukolosky, William T. Vetterling, Brian P. Flannery,
|
||||
* "Numerical Recipes in C - The Art of Scientific Computing", Second Edition,
|
||||
* Cambridge University Press,
|
||||
* ISBN 0-521-43108-5,
|
||||
* chapter 3, pages 108-122.</a><br>
|
||||
*
|
||||
* @param x the x value
|
||||
* @return the interpolated y value and the interpolation error
|
||||
* @see #polynomialInterpolation(AbstractDataSet, double)
|
||||
* @see #polynomialInterpolation(double[], double[], double)
|
||||
* @see #getY(double)
|
||||
* @see #getYandDerivatives(double, int)
|
||||
* @see #calculatePolynomialCoefficients()
|
||||
* @see #calculatePolynomialCoefficients(AbstractDataSet)
|
||||
* @see #calculatePolynomialCoefficients(double[], double[])
|
||||
*/
|
||||
public PolynomialInterpolationResult polynomialInterpolation(double x)
|
||||
throws InterpolationException
|
||||
{
|
||||
if (abstractDataSet == null)
|
||||
throw new InterpolationException(
|
||||
"No data." + " The AbstractDataSet was not defined.");
|
||||
return polynomialInterpolation(
|
||||
abstractDataSet.getXData(),
|
||||
abstractDataSet.getYData(),
|
||||
x);
|
||||
}
|
||||
|
||||
/**
|
||||
* Neville's interpolation algorithm. This algorithm was taken from:<br>
|
||||
* <a href="http://www.ulib.org/webRoot/Books/Numerical_Recipes/" target="_top">
|
||||
* William H. Press, Saul A. Teukolosky, William T. Vetterling, Brian P. Flannery,
|
||||
* "Numerical Recipes in C - The Art of Scientific Computing", Second Edition,
|
||||
* Cambridge University Press,
|
||||
* ISBN 0-521-43108-5,
|
||||
* chapter 3, pages 108-122.</a><br>
|
||||
*
|
||||
* @param abstractDataSet the <code>AbstractDataSet</code>
|
||||
* @param x the x value
|
||||
* @return the interpolated y value and the interpolation error
|
||||
* @see #polynomialInterpolation(double)
|
||||
* @see #polynomialInterpolation(double[], double[], double)
|
||||
* @see #getY(double)
|
||||
* @see #getYandDerivatives(double, int)
|
||||
* @see #calculatePolynomialCoefficients()
|
||||
* @see #calculatePolynomialCoefficients(AbstractDataSet)
|
||||
* @see #calculatePolynomialCoefficients(double[], double[])
|
||||
*/
|
||||
public PolynomialInterpolationResult polynomialInterpolation(
|
||||
AbstractDataSet abstractDataSet,
|
||||
double x)
|
||||
throws InterpolationException
|
||||
{
|
||||
if (abstractDataSet == null)
|
||||
throw new InterpolationException(
|
||||
"No data." + " The AbstractDataSet was not defined.");
|
||||
return polynomialInterpolation(
|
||||
abstractDataSet.getXData(),
|
||||
abstractDataSet.getYData(),
|
||||
x);
|
||||
}
|
||||
|
||||
/**
|
||||
* Neville's interpolation algorithm. This algorithm was taken from:<br>
|
||||
* <a href="http://www.ulib.org/webRoot/Books/Numerical_Recipes/" target="_top">
|
||||
* William H. Press, Saul A. Teukolosky, William T. Vetterling, Brian P. Flannery,
|
||||
* "Numerical Recipes in C - The Art of Scientific Computing", Second Edition,
|
||||
* Cambridge University Press,
|
||||
* ISBN 0-521-43108-5,
|
||||
* chapter 3, pages 108-122.</a><br>
|
||||
*
|
||||
* @param xa the array of x values
|
||||
* @param ya the array of y values
|
||||
* @param x the x value
|
||||
* @return the interpolated y value and the interpolation error
|
||||
* @see #polynomialInterpolation(double)
|
||||
* @see #polynomialInterpolation(AbstractDataSet, double)
|
||||
* @see #getY(double)
|
||||
* @see #getYandDerivatives(double, int)
|
||||
* @see #calculatePolynomialCoefficients()
|
||||
* @see #calculatePolynomialCoefficients(AbstractDataSet)
|
||||
* @see #calculatePolynomialCoefficients(double[], double[])
|
||||
*/
|
||||
public PolynomialInterpolationResult polynomialInterpolation(
|
||||
double[] xa,
|
||||
double[] ya,
|
||||
double x)
|
||||
throws InterpolationException
|
||||
{
|
||||
if (xa == null || ya == null)
|
||||
throw new InterpolationException("No data.");
|
||||
int i, m, ns = 1;
|
||||
double den, dif, dift, ho, hp, w;
|
||||
double[] c = new double[xa.length + 1];
|
||||
double[] d = new double[xa.length + 1];
|
||||
PolynomialInterpolationResult result =
|
||||
new PolynomialInterpolationResult();
|
||||
|
||||
dif = Math.abs(x - xa[1 - 1]);
|
||||
for (i = 1; i <= xa.length; i++)
|
||||
{
|
||||
if ((dift = Math.abs(x - xa[i - 1])) < dif)
|
||||
{
|
||||
ns = i;
|
||||
dif = dift;
|
||||
}
|
||||
c[i] = ya[i - 1];
|
||||
d[i] = ya[i - 1];
|
||||
//System.out.println("x"+xa[i-1]+" y"+ya[i-1]);
|
||||
}
|
||||
result.y = ya[ns - 1];
|
||||
//System.out.println("y="+result.y+" ns="+ns);
|
||||
ns--;
|
||||
for (m = 1; m < xa.length; m++)
|
||||
{
|
||||
for (i = 1; i <= xa.length - m; i++)
|
||||
{
|
||||
ho = xa[i - 1] - x;
|
||||
hp = xa[i + m - 1] - x;
|
||||
w = c[i + 1] - d[i];
|
||||
if ((den = ho - hp) == 0.0)
|
||||
{
|
||||
if (sloppy)
|
||||
{
|
||||
System.out.println(
|
||||
"Two identical x values. The values must be distinct.");
|
||||
den = 1.0;
|
||||
}
|
||||
else
|
||||
throw new InterpolationException("Two identical x values.");
|
||||
}
|
||||
den = w / den;
|
||||
d[i] = hp * den;
|
||||
c[i] = ho * den;
|
||||
}
|
||||
result.y
|
||||
+= (result.yError =
|
||||
(2 * ns < (xa.length - m) ? c[ns + 1] : d[ns--]));
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculates the coefficients of a polynom of the grade <code>N-1</code>. This
|
||||
* interpolation algorithm was taken from:<br>
|
||||
* <a href="http://www.ulib.org/webRoot/Books/Numerical_Recipes/" target="_top">
|
||||
* William H. Press, Saul A. Teukolosky, William T. Vetterling, Brian P. Flannery,
|
||||
* "Numerical Recipes in C - The Art of Scientific Computing", Second Edition,
|
||||
* Cambridge University Press,
|
||||
* ISBN 0-521-43108-5,
|
||||
* chapter 3, pages 108-122.</a><br>
|
||||
*
|
||||
* @return the array with the polynomial coefficients y = ...[0] +
|
||||
* ...[1]*x<SUP>2</SUP> + ...[2]*x<SUP>3</SUP> + ...
|
||||
* @see #calculatePolynomialCoefficients(AbstractDataSet)
|
||||
* @see #calculatePolynomialCoefficients(double[], double[])
|
||||
* @see #polynomialInterpolation(double)
|
||||
* @see #polynomialInterpolation(AbstractDataSet, double)
|
||||
* @see #polynomialInterpolation(double[], double[], double)
|
||||
* @see #getY(double)
|
||||
* @see #getYandDerivatives(double, int)
|
||||
*/
|
||||
public double[] calculatePolynomialCoefficients()
|
||||
throws InterpolationException
|
||||
{
|
||||
if (abstractDataSet == null)
|
||||
throw new InterpolationException(
|
||||
"No data." + " The AbstractDataSet was not defined.");
|
||||
return calculatePolynomialCoefficients(
|
||||
abstractDataSet.getXData(),
|
||||
abstractDataSet.getYData());
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculates the coefficients of a polynom of the grade <code>N-1</code>. This
|
||||
* interpolation algorithm was taken from:<br>
|
||||
* <a href="http://www.ulib.org/webRoot/Books/Numerical_Recipes/" target="_top">
|
||||
* William H. Press, Saul A. Teukolosky, William T. Vetterling, Brian P. Flannery,
|
||||
* "Numerical Recipes in C - The Art of Scientific Computing", Second Edition,
|
||||
* Cambridge University Press,
|
||||
* ISBN 0-521-43108-5,
|
||||
* chapter 3, pages 108-122.</a><br>
|
||||
*
|
||||
* @param abstractDataSet the <code>AbstractDataSet</code>
|
||||
* @return the array with the polynomial coefficients y = ...[0] +
|
||||
* ...[1]*x<SUP>2</SUP> + ...[2]*x<SUP>3</SUP> + ...
|
||||
* @see #calculatePolynomialCoefficients()
|
||||
* @see #calculatePolynomialCoefficients(double[], double[])
|
||||
* @see #polynomialInterpolation(double)
|
||||
* @see #polynomialInterpolation(AbstractDataSet, double)
|
||||
* @see #polynomialInterpolation(double[], double[], double)
|
||||
* @see #getY(double)
|
||||
* @see #getYandDerivatives(double, int)
|
||||
*/
|
||||
public double[] calculatePolynomialCoefficients(AbstractDataSet abstractDataSet)
|
||||
throws InterpolationException
|
||||
{
|
||||
if (abstractDataSet == null)
|
||||
throw new InterpolationException(
|
||||
"No data." + " The AbstractDataSet was not defined.");
|
||||
return calculatePolynomialCoefficients(
|
||||
abstractDataSet.getXData(),
|
||||
abstractDataSet.getYData());
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculates the coefficients of a polynom of the grade <code>N-1</code>. This
|
||||
* interpolation algorithm was taken from:<br>
|
||||
* <a href="http://www.ulib.org/webRoot/Books/Numerical_Recipes/" target="_top">
|
||||
* William H. Press, Saul A. Teukolosky, William T. Vetterling, Brian P. Flannery,
|
||||
* "Numerical Recipes in C - The Art of Scientific Computing", Second Edition,
|
||||
* Cambridge University Press,
|
||||
* ISBN 0-521-43108-5,
|
||||
* chapter 3, pages 108-122.</a><br>
|
||||
*
|
||||
* @param x the array of x values
|
||||
* @param y the array of y values
|
||||
* @return the array with the polynomial coefficients y = ...[0] +
|
||||
* ...[1]*x<SUP>2</SUP> + ...[2]*x<SUP>3</SUP> + ...
|
||||
* @see #calculatePolynomialCoefficients()
|
||||
* @see #calculatePolynomialCoefficients(AbstractDataSet)
|
||||
* @see #polynomialInterpolation(double)
|
||||
* @see #polynomialInterpolation(AbstractDataSet, double)
|
||||
* @see #polynomialInterpolation(double[], double[], double)
|
||||
* @see #getY(double)
|
||||
* @see #getYandDerivatives(double, int)
|
||||
*/
|
||||
public double[] calculatePolynomialCoefficients(double x[], double y[])
|
||||
{
|
||||
int k, j, i, n = x.length - 1;
|
||||
double phi, ff, b;
|
||||
double[] s = new double[n + 1];
|
||||
double[] cof = new double[n + 1];
|
||||
|
||||
for (i = 0; i <= n; i++)
|
||||
{
|
||||
s[i] = cof[i] = 0.0;
|
||||
}
|
||||
s[n] = -x[0];
|
||||
|
||||
for (i = 1; i <= n; i++)
|
||||
{
|
||||
for (j = n - i; j <= n - 1; j++)
|
||||
{
|
||||
s[j] -= x[i] * s[j + 1];
|
||||
}
|
||||
s[n] -= x[i];
|
||||
}
|
||||
|
||||
for (j = 0; j < n; j++)
|
||||
{
|
||||
phi = n + 1;
|
||||
for (k = n; k >= 1; k--)
|
||||
{
|
||||
phi = k * s[k] + x[j] * phi;
|
||||
}
|
||||
ff = y[j] / phi;
|
||||
b = 1.0;
|
||||
for (k = n; k >= 0; k--)
|
||||
{
|
||||
cof[k] += b * ff;
|
||||
b = s[k] + x[j] * b;
|
||||
}
|
||||
}
|
||||
return cof;
|
||||
}
|
||||
}
|
||||
|
||||
/****************************************************************************
|
||||
* END OF FILE
|
||||
****************************************************************************/
|
@@ -0,0 +1,56 @@
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// Filename: $RCSfile: PolynomialInterpolationResult.java,v $
|
||||
// Purpose: Some interpolation stuff.
|
||||
// Language: Java
|
||||
// Compiler: JDK 1.4
|
||||
// Authors: Joerg K. Wegner
|
||||
// Version: $Revision: 1.1 $
|
||||
// $Date: 2003/07/22 19:25:36 $
|
||||
// $Author: wegnerj $
|
||||
//
|
||||
// Copyright (c) Dept. Computer Architecture, University of Tuebingen, Germany
|
||||
//
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
package wsi.ra.math.interpolation;
|
||||
|
||||
/*==========================================================================*
|
||||
* IMPORTS
|
||||
*==========================================================================*/
|
||||
|
||||
/*==========================================================================*
|
||||
* CLASS DECLARATION
|
||||
*==========================================================================*/
|
||||
|
||||
/**
|
||||
* The result data for a polynomial interpolation.
|
||||
*/
|
||||
public class PolynomialInterpolationResult
|
||||
{
|
||||
/*-------------------------------------------------------------------------*
|
||||
* public member variables
|
||||
*-------------------------------------------------------------------------*/
|
||||
|
||||
public double y = Double.NaN;
|
||||
public double yError = Double.NaN;
|
||||
|
||||
/*------------------------------------------------------------------------*
|
||||
* constructor
|
||||
*------------------------------------------------------------------------*/
|
||||
|
||||
public PolynomialInterpolationResult()
|
||||
{
|
||||
y = Double.NaN;
|
||||
yError = Double.NaN;
|
||||
}
|
||||
|
||||
public PolynomialInterpolationResult(double y, double yError)
|
||||
{
|
||||
this.y = y;
|
||||
this.yError = yError;
|
||||
}
|
||||
}
|
||||
|
||||
/****************************************************************************
|
||||
* END OF FILE
|
||||
****************************************************************************/
|
299
src/wsi/ra/math/interpolation/SplineInterpolation.java
Normal file
299
src/wsi/ra/math/interpolation/SplineInterpolation.java
Normal file
@@ -0,0 +1,299 @@
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// Filename: $RCSfile: SplineInterpolation.java,v $
|
||||
// Purpose: Some interpolation stuff.
|
||||
// Language: Java
|
||||
// Compiler: JDK 1.4
|
||||
// Authors: Joerg K. Wegner
|
||||
// Version: $Revision: 1.1 $
|
||||
// $Date: 2003/07/22 19:25:42 $
|
||||
// $Author: wegnerj $
|
||||
//
|
||||
// Copyright (c) Dept. Computer Architecture, University of Tuebingen, Germany
|
||||
//
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
package wsi.ra.math.interpolation;
|
||||
|
||||
/*==========================================================================*
|
||||
* IMPORTS
|
||||
*==========================================================================*/
|
||||
|
||||
/**
|
||||
* Defines the routines for the spline interpolation of data.
|
||||
*/
|
||||
public class SplineInterpolation
|
||||
{
|
||||
AbstractDataSet abstractDataSet = null;
|
||||
double[] secondDerivative = null;
|
||||
double[] xArray = null;
|
||||
double[] yArray = null;
|
||||
boolean ascendingData = true;
|
||||
|
||||
/*------------------------------------------------------------------------*
|
||||
* constructor
|
||||
*------------------------------------------------------------------------*/
|
||||
/**
|
||||
* Initializes this class.
|
||||
*/
|
||||
public SplineInterpolation() throws InterpolationException
|
||||
{
|
||||
this.abstractDataSet = null;
|
||||
this.secondDerivative = null;
|
||||
}
|
||||
|
||||
/**
|
||||
* Initializes this class and calculates the second derivative of the spline.
|
||||
*
|
||||
* @param abstractDataSet the <code>AbstractDataSet</code>
|
||||
*/
|
||||
public SplineInterpolation(AbstractDataSet abstractDataSet)
|
||||
throws InterpolationException
|
||||
{
|
||||
this.setAbstractDataSet(abstractDataSet);
|
||||
}
|
||||
|
||||
/**
|
||||
* Sets the new <code>AbstractDataSet</code> and calculates the second
|
||||
* derivative of the spline.
|
||||
*
|
||||
* @param abstractDataSet the <code>AbstractDataSet</code>
|
||||
*/
|
||||
public void setAbstractDataSet(AbstractDataSet abstractDataSet)
|
||||
throws InterpolationException
|
||||
{
|
||||
this.abstractDataSet = abstractDataSet;
|
||||
double[] x = abstractDataSet.getXData();
|
||||
double[] y = abstractDataSet.getYData();
|
||||
boolean ascending = false;
|
||||
boolean descending = false;
|
||||
int n = x.length;
|
||||
|
||||
xArray = new double[n];
|
||||
yArray = new double[n];
|
||||
xArray[n - 1] = x[0];
|
||||
yArray[n - 1] = y[0];
|
||||
for (int i = 0; i < n - 1; i++)
|
||||
{
|
||||
xArray[i] = x[n - i - 1];
|
||||
yArray[i] = y[n - i - 1];
|
||||
if (x[i] < x[i + 1])
|
||||
{
|
||||
//if(descending)throw new InterpolationException("The x values must be"+
|
||||
// " in continous ascending/descending order.");
|
||||
ascending = true;
|
||||
}
|
||||
else
|
||||
{
|
||||
//if(ascending)throw new InterpolationException("The x values must be"+
|
||||
// " in continous ascending/descending order.");
|
||||
descending = true;
|
||||
}
|
||||
}
|
||||
ascendingData = ascending;
|
||||
|
||||
if (ascendingData)
|
||||
{
|
||||
xArray = null;
|
||||
yArray = null;
|
||||
xArray = abstractDataSet.getXData();
|
||||
yArray = abstractDataSet.getYData();
|
||||
}
|
||||
this.secondDerivative =
|
||||
spline(
|
||||
xArray,
|
||||
yArray,
|
||||
(yArray[1] - yArray[0]) / (xArray[1] - xArray[0]),
|
||||
(yArray[n - 1] - yArray[n - 2]) / (xArray[1] - xArray[n - 2]));
|
||||
}
|
||||
|
||||
/**
|
||||
* Uses the spline with the calculated second derivative values to calculate
|
||||
* the <code>y</code> value. This algorithm was taken from:<br>
|
||||
* <a href="http://www.ulib.org/webRoot/Books/Numerical_Recipes/" target="_top">
|
||||
* William H. Press, Saul A. Teukolosky, William T. Vetterling, Brian P. Flannery,
|
||||
* "Numerical Recipes in C - The Art of Scientific Computing", Second Edition,
|
||||
* Cambridge University Press,
|
||||
* ISBN 0-521-43108-5,
|
||||
* chapter 5, pages 173-176.</a><br>
|
||||
*/
|
||||
public double getY(double x) throws InterpolationException
|
||||
{
|
||||
return splineInterpolation(xArray, yArray, secondDerivative, x);
|
||||
}
|
||||
|
||||
public double getDerivative(double x) throws InterpolationException
|
||||
{
|
||||
return splineInterpolatedDerivative(
|
||||
xArray,
|
||||
yArray,
|
||||
secondDerivative,
|
||||
x);
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculates the second derivative of the data. It's important that the
|
||||
* x<sub>i</sub> values of the function y<sub>i</sub>=f(x<sub>i</sub>) are
|
||||
* in ascending order, as x<sub>0</sub><x<sub>1</sub><x<sub>2</sub><... .
|
||||
* This algorithm was taken from:<br>
|
||||
* <a href="http://www.ulib.org/webRoot/Books/Numerical_Recipes/" target="_top">
|
||||
* William H. Press, Saul A. Teukolosky, William T. Vetterling, Brian P. Flannery,
|
||||
* "Numerical Recipes in C - The Art of Scientific Computing", Second Edition,
|
||||
* Cambridge University Press,
|
||||
* ISBN 0-521-43108-5,
|
||||
* chapter 3, pages 113-116.</a><br>
|
||||
*/
|
||||
public double[] spline(double[] x, double[] y, double yp0, double ypn)
|
||||
throws InterpolationException
|
||||
{
|
||||
if (x[0] > x[1])
|
||||
throw new InterpolationException(
|
||||
"The x values must be" + " in ascending order.");
|
||||
int n = x.length;
|
||||
double[] y2 = new double[n];
|
||||
double[] u = new double[n - 1];
|
||||
int i, k;
|
||||
double p, qn, sig, un;
|
||||
|
||||
if (yp0 > 0.99e30)
|
||||
y2[0] = u[0] = 0.0;
|
||||
else
|
||||
{
|
||||
y2[0] = -0.5;
|
||||
u[0] =
|
||||
(3.0 / (x[1] - x[0])) * ((y[1] - y[0]) / (x[1] - x[0]) - yp0);
|
||||
}
|
||||
for (i = 2; i <= n - 1; i++)
|
||||
{
|
||||
sig = (x[i - 1] - x[i - 2]) / (x[i] - x[i - 2]);
|
||||
p = sig * y2[i - 2] + 2.0;
|
||||
y2[i - 1] = (sig - 1.0) / p;
|
||||
u[i - 1] =
|
||||
(y[i] - y[i - 1]) / (x[i] - x[i - 1])
|
||||
- (y[i - 1] - y[i - 2]) / (x[i - 1] - x[i - 2]);
|
||||
u[i - 1] =
|
||||
(6.0 * u[i - 1] / (x[i] - x[i - 2]) - sig * u[i - 2]) / p;
|
||||
}
|
||||
if (ypn > 0.99e30)
|
||||
{
|
||||
qn = un = 0.0;
|
||||
}
|
||||
else
|
||||
{
|
||||
qn = 0.5;
|
||||
un =
|
||||
(3.0 / (x[n - 1] - x[n - 2]))
|
||||
* (ypn - (y[n - 1] - y[n - 2]) / (x[n - 1] - x[n - 2]));
|
||||
}
|
||||
y2[n - 1] = (un - qn * u[n - 2]) / (qn * y2[n - 2] + 1.0);
|
||||
for (k = n - 1; k >= 1; k--)
|
||||
{
|
||||
y2[k - 1] = y2[k - 1] * y2[k] + u[k - 1];
|
||||
}
|
||||
|
||||
return y2;
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculates the second derivative of the data. This algorithm
|
||||
* was taken from:<br>
|
||||
* <a href="http://www.ulib.org/webRoot/Books/Numerical_Recipes/" target="_top">
|
||||
* William H. Press, Saul A. Teukolosky, William T. Vetterling, Brian P. Flannery,
|
||||
* "Numerical Recipes in C - The Art of Scientific Computing", Second Edition,
|
||||
* Cambridge University Press,
|
||||
* ISBN 0-521-43108-5,
|
||||
* chapter 3, pages 113-116.</a><br>
|
||||
*/
|
||||
public double splineInterpolation(
|
||||
double[] xa,
|
||||
double[] ya,
|
||||
double[] y2a,
|
||||
double x)
|
||||
throws InterpolationException
|
||||
{
|
||||
int n = xa.length;
|
||||
if (n != ya.length || n != y2a.length)
|
||||
{
|
||||
throw new InterpolationException("Arrays have different lengths.");
|
||||
}
|
||||
double y;
|
||||
int klo, khi, k;
|
||||
double h, b, a;
|
||||
|
||||
klo = 0;
|
||||
khi = n - 1;
|
||||
while (khi - klo > 1)
|
||||
{
|
||||
k = (khi + klo) >> 1;
|
||||
if (xa[k] > x)
|
||||
khi = k;
|
||||
else
|
||||
klo = k;
|
||||
}
|
||||
h = xa[khi] - xa[klo];
|
||||
//System.out.println(""+x+" between "+xa[khi]+" "+xa[klo]);
|
||||
if (h == 0.0)
|
||||
throw new InterpolationException("Two identical x values. The values must be distinct.");
|
||||
a = (xa[khi] - x) / h;
|
||||
b = (x - xa[klo]) / h;
|
||||
y =
|
||||
a * ya[klo]
|
||||
+ b * ya[khi]
|
||||
+ ((a * a * a - a) * y2a[klo] + (b * b * b - b) * y2a[khi])
|
||||
* (h * h)
|
||||
/ 6.0;
|
||||
return y;
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculates the second derivative of the data. This algorithm
|
||||
* was taken from:<br>
|
||||
* <a href="http://www.ulib.org/webRoot/Books/Numerical_Recipes/" target="_top">
|
||||
* William H. Press, Saul A. Teukolosky, William T. Vetterling, Brian P. Flannery,
|
||||
* "Numerical Recipes in C - The Art of Scientific Computing", Second Edition,
|
||||
* Cambridge University Press,
|
||||
* ISBN 0-521-43108-5,
|
||||
* chapter 3, pages 113-116.</a><br>
|
||||
*/
|
||||
public double splineInterpolatedDerivative(
|
||||
double[] xa,
|
||||
double[] ya,
|
||||
double[] y2a,
|
||||
double x)
|
||||
throws InterpolationException
|
||||
{
|
||||
int n = xa.length;
|
||||
if (n != ya.length || n != y2a.length)
|
||||
{
|
||||
throw new InterpolationException("Arrays have different lengths.");
|
||||
}
|
||||
double dydx;
|
||||
int klo, khi, k;
|
||||
double h, b, a;
|
||||
|
||||
klo = 0;
|
||||
khi = n - 1;
|
||||
while (khi - klo > 1)
|
||||
{
|
||||
k = (khi + klo) >> 1;
|
||||
if (xa[k] > x)
|
||||
khi = k;
|
||||
else
|
||||
klo = k;
|
||||
}
|
||||
h = xa[khi] - xa[klo];
|
||||
//System.out.println(""+x+" between "+xa[khi]+" "+xa[klo]);
|
||||
if (h == 0.0)
|
||||
throw new InterpolationException("Two identical x values. The values must be distinct.");
|
||||
a = (xa[khi] - x) / h;
|
||||
b = (x - xa[klo]) / h;
|
||||
dydx =
|
||||
(ya[khi] - ya[klo]) / h
|
||||
- ((3 * (a * a) - 1) * h * y2a[klo]) / 6.0
|
||||
+ ((3 * (b * b) - 1) * h * y2a[khi]) / 6.0;
|
||||
return dydx;
|
||||
}
|
||||
}
|
||||
|
||||
/****************************************************************************
|
||||
* END OF FILE
|
||||
****************************************************************************/
|
Reference in New Issue
Block a user