Move InterfacePopulationChangedEventListener to

eva2.optimization.population.
This commit is contained in:
Fabian Becker 2014-10-31 19:05:38 +01:00
parent c8de290e4c
commit 9a8efc403e
88 changed files with 97 additions and 128 deletions

View File

@ -4,7 +4,7 @@ import eva2.optimization.enums.DEType;
import eva2.optimization.enums.MutateESCrossoverType;
import eva2.optimization.enums.PSOTopology;
import eva2.optimization.enums.PostProcessMethod;
import eva2.optimization.go.InterfacePopulationChangedEventListener;
import eva2.optimization.population.InterfacePopulationChangedEventListener;
import eva2.optimization.individuals.*;
import eva2.optimization.modules.OptimizationParameters;
import eva2.optimization.operator.archiving.ArchivingNSGAII;
@ -572,7 +572,7 @@ public class OptimizerFactory {
}
/**
* Return a simple String showing the accessible optimizers. For external
* Return a eva2.problems.simple String showing the accessible optimizers. For external
* access."
*
* @return a String listing the accessible optimizers
@ -1303,7 +1303,7 @@ public class OptimizerFactory {
}
/**
* Create a standard clustering hill climbing employing simple ES mutation
* Create a standard clustering hill climbing employing eva2.problems.simple ES mutation
* with adaptive step size, starting in parallel 100 local searches and
* clustering intermediate populations to avoid optima being found several
* times by the same population (density based clustering with sigma =
@ -1338,9 +1338,9 @@ public class OptimizerFactory {
}
/**
* Create a custom clustering hillclimber using ES mutation (simple or CMA)
* Create a custom clustering hillclimber using ES mutation (eva2.problems.simple or CMA)
* or nelder mead. The parameters hcInitialStep and hcStepThresh are only
* relevant for the simple mutation based hc method.
* relevant for the eva2.problems.simple mutation based hc method.
*
* @param problem
* @param evalCycle

View File

@ -20,7 +20,7 @@ import java.util.BitSet;
/**
* This Runnable class just encapsulates the Processor class with some simple ways to access a solution.
* This Runnable class just encapsulates the Processor class with some eva2.problems.simple ways to access a solution.
*
* @author mkron
*/

View File

@ -5,7 +5,7 @@ import eva2.OptimizerFactory;
import eva2.optimization.OptimizationStateListener;
import eva2.optimization.enums.DEType;
import eva2.optimization.enums.PSOTopology;
import eva2.optimization.go.InterfacePopulationChangedEventListener;
import eva2.optimization.population.InterfacePopulationChangedEventListener;
import eva2.optimization.modules.OptimizationParameters;
import eva2.optimization.operator.crossover.CrossoverESDefault;
import eva2.optimization.operator.crossover.InterfaceCrossover;
@ -29,7 +29,6 @@ import java.util.Map;
import java.util.Set;
import java.util.TreeMap;
import java.util.logging.Level;
import java.util.logging.LogManager;
import java.util.logging.Logger;
/**

View File

@ -11,7 +11,7 @@ import java.util.List;
public class TestingCbnPostProc {
public static void main(String[] args) {
// a simple bimodal target function, two optima near (1.7,0) and (-1.44/0)
// a eva2.problems.simple bimodal target function, two optima near (1.7,0) and (-1.44/0)
FM0Problem fm0 = new FM0Problem();
AbstractEAIndividual best;
List<AbstractEAIndividual> ppSols;

View File

@ -12,7 +12,7 @@ import eva2.optimization.strategies.EvolutionStrategies;
public class TestingPlusCmaEs {
public static void main(String[] args) {
// a simple bimodal target function, two optima near (1.7,0) and (-1.44/0)
// a eva2.problems.simple bimodal target function, two optima near (1.7,0) and (-1.44/0)
FM0Problem fm0 = new FM0Problem();
AbstractEAIndividual bestIndy;
// create standard ES parameters

View File

@ -10,7 +10,7 @@ import java.beans.PropertyChangeSupport;
import java.beans.PropertyEditor;
/**
* A simple focus listener with an object ID and callback.
* A eva2.problems.simple focus listener with an object ID and callback.
*
* @author mkron
*/

View File

@ -7,6 +7,7 @@ import eva2.optimization.mocco.paretofrontviewer.MOCCOViewer;
import eva2.optimization.operator.moso.InterfaceMOSOConverter;
import eva2.optimization.operator.moso.MOSOWeightedFitness;
import eva2.optimization.operator.terminators.EvaluationTerminator;
import eva2.optimization.population.InterfacePopulationChangedEventListener;
import eva2.optimization.population.Population;
import eva2.problems.*;
import eva2.optimization.strategies.InterfaceOptimizer;

View File

@ -14,6 +14,7 @@ import eva2.optimization.operator.mutation.MutateESFixedStepSize;
import eva2.optimization.operator.mutation.MutateESLocal;
import eva2.optimization.operator.selection.SelectTournament;
import eva2.optimization.operator.terminators.EvaluationTerminator;
import eva2.optimization.population.InterfacePopulationChangedEventListener;
import eva2.optimization.population.Population;
import eva2.problems.F1Problem;
import eva2.optimization.strategies.EvolutionStrategies;
@ -135,7 +136,7 @@ public class StandaloneOptimization implements InterfaceStandaloneOptimization,
// build the Options Panel
JParaPanel paraPanel = new JParaPanel(this, "MyGUI");
Class object = null, editor = null;
String tmp = "eva2.optimization.go.Tools.InterfaceTest";
String tmp = "eva2.optimization.tools.InterfaceTest";
try {
object = Class.forName(tmp);
} catch (java.lang.ClassNotFoundException e) {
@ -316,7 +317,7 @@ public class StandaloneOptimization implements InterfaceStandaloneOptimization,
break;
}
case 1: {
// use the simple ES Local
// use the eva2.problems.simple ES Local
this.outputFileName = "X360_StandardES";
EvolutionStrategies es = new EvolutionStrategies();
this.optimizationParameters.setOptimizer(es);

View File

@ -288,7 +288,7 @@ public class ESIndividualBinaryData extends AbstractEAIndividual implements Inte
}
/**
* This method performs a simple one element mutation on the double vector
* This method performs a eva2.problems.simple one element mutation on the double vector
*/
@Override
public void defaultMutate() {

View File

@ -348,7 +348,7 @@ public class ESIndividualDoubleData extends AbstractEAIndividual implements Inte
}
/**
* This method performs a simple one element mutation on the double vector
* This method performs a eva2.problems.simple one element mutation on the double vector
*/
@Override
public void defaultMutate() {

View File

@ -303,7 +303,7 @@ public class ESIndividualIntegerData extends AbstractEAIndividual implements Int
}
/**
* This method performs a simple one element mutation on the double vector
* This method performs a eva2.problems.simple one element mutation on the double vector
*/
@Override
public void defaultMutate() {

View File

@ -88,7 +88,7 @@ public class GAIndividualBinaryData extends AbstractEAIndividual implements Inte
}
/**
* This method evaluates the GAIndividual as simple minimize number
* This method evaluates the GAIndividual as eva2.problems.simple minimize number
* of bits problem.
*
* @return The number of true bits
@ -218,7 +218,7 @@ public class GAIndividualBinaryData extends AbstractEAIndividual implements Inte
}
/**
* This method performs a simple one point mutation in the genotype
* This method performs a eva2.problems.simple one point mutation in the genotype
*/
@Override
public void defaultMutate() {

View File

@ -342,7 +342,7 @@ public class GAIndividualDoubleData extends AbstractEAIndividual implements Inte
}
/**
* This method performs a simple one point mutation in the genotype
* This method performs a eva2.problems.simple one point mutation in the genotype
*/
@Override
public void defaultMutate() {

View File

@ -398,7 +398,7 @@ public class GAIndividualIntegerData extends AbstractEAIndividual implements Int
}
/**
* This method performs a simple one point mutation in the genotype
* This method performs a eva2.problems.simple one point mutation in the genotype
*/
@Override
public void defaultMutate() {

View File

@ -674,7 +674,7 @@ public class GEIndividualProgramData extends AbstractEAIndividual implements Int
}
/**
* This method performs a simple one point mutation in the genotype
* This method performs a eva2.problems.simple one point mutation in the genotype
*/
@Override
public void defaultMutate() {

View File

@ -317,7 +317,7 @@ public class GIIndividualIntegerData extends AbstractEAIndividual implements Int
}
/**
* This method performs a simple one point mutation in the genotype
* This method performs a eva2.problems.simple one point mutation in the genotype
*/
@Override
public void defaultMutate() {

View File

@ -313,7 +313,7 @@ public class GPIndividualProgramData extends AbstractEAIndividual implements Int
}
/**
* This method performs a simple one element mutation on the program
* This method performs a eva2.problems.simple one element mutation on the program
*/
@Override
public void defaultMutate() {

View File

@ -85,7 +85,7 @@ public class GAGrayCodingDouble implements InterfaceGADoubleCoding, java.io.Seri
}
/**
* A simple test method
* A eva2.problems.simple test method
*
* @param args no args needed
*/

View File

@ -135,7 +135,7 @@ public class GAStandardCodingDouble implements InterfaceGADoubleCoding, java.io.
}
/**
* A simple test function without arguments
* A eva2.problems.simple test function without arguments
*
* @param args
*/

View File

@ -4,7 +4,7 @@ package eva2.optimization.individuals.codings.gp;
import eva2.problems.InterfaceProgramProblem;
/**
* A simple add node with two arguments.
* A eva2.problems.simple add node with two arguments.
* Created by IntelliJ IDEA.
* User: streiche
* Date: 04.04.2003

View File

@ -3,7 +3,7 @@ package eva2.optimization.individuals.codings.gp;
import eva2.problems.InterfaceProgramProblem;
/**
* A simple constant node with the value 1.
* A eva2.problems.simple constant node with the value 1.
*/
public class GPNodeConst extends AbstractGPNode implements java.io.Serializable {
double value = 1.;

View File

@ -2,7 +2,7 @@ package eva2.optimization.individuals.codings.gp;
/**
* A simple constant node with the value 1.
* A eva2.problems.simple constant node with the value 1.
*/
public class GPNodeOne extends GPNodeConst implements java.io.Serializable {
public GPNodeOne() {

View File

@ -2,7 +2,7 @@ package eva2.optimization.individuals.codings.gp;
/**
* A simple constant node with the value 1.
* A eva2.problems.simple constant node with the value 1.
*/
public class GPNodePi extends GPNodeConst implements java.io.Serializable {
public GPNodePi() {

View File

@ -5,7 +5,7 @@ import eva2.problems.InterfaceProgramProblem;
import eva2.tools.math.Mathematics;
/**
* A simple product node with a single, possibly vectorial (array), argument.
* A eva2.problems.simple product node with a single, possibly vectorial (array), argument.
*/
public class GPNodeProd extends AbstractGPNode implements java.io.Serializable {

View File

@ -5,7 +5,7 @@ import eva2.problems.InterfaceProgramProblem;
import eva2.tools.math.Mathematics;
/**
* A simple sum node with a single, possibly vectorial (array), argument.
* A eva2.problems.simple sum node with a single, possibly vectorial (array), argument.
*/
public class GPNodeSum extends AbstractGPNode implements java.io.Serializable {

View File

@ -351,7 +351,7 @@ public class MOCCOViewer extends JPanel implements InterfaceRefSolutionListener,
}
/**
* This method will plot a simple fitness plot, using the iterations a x-axis
* This method will plot a eva2.problems.simple fitness plot, using the iterations a x-axis
*/
public void plot1DFitnessPlot() {
double xmin = 0, ymin = Double.POSITIVE_INFINITY, xmax = Double.NEGATIVE_INFINITY, ymax = Double.NEGATIVE_INFINITY, fitness;

View File

@ -176,7 +176,7 @@ public class ParetoFrontView2D extends JPanel implements InterfaceParetoFrontVie
}
/**
* This method will plot a simple fitness plot, using the iterations a x-axis
* This method will plot a eva2.problems.simple fitness plot, using the iterations a x-axis
*/
public void plot2DParetoFront() {
double xmin = Double.POSITIVE_INFINITY, ymin = Double.POSITIVE_INFINITY, xmax = Double.NEGATIVE_INFINITY, ymax = Double.NEGATIVE_INFINITY;

View File

@ -3,7 +3,7 @@ package eva2.optimization.modules;
import eva2.gui.BeanInspector;
import eva2.optimization.go.InterfaceNotifyOnInformers;
import eva2.optimization.go.InterfaceOptimizationParameters;
import eva2.optimization.go.InterfacePopulationChangedEventListener;
import eva2.optimization.population.InterfacePopulationChangedEventListener;
import eva2.optimization.operator.postprocess.InterfacePostProcessParams;
import eva2.optimization.operator.postprocess.PostProcessParams;
import eva2.optimization.operator.terminators.InterfaceTerminator;

View File

@ -4,7 +4,7 @@ import eva2.gui.BeanInspector;
import eva2.optimization.OptimizationStateListener;
import eva2.optimization.go.InterfaceNotifyOnInformers;
import eva2.optimization.go.InterfaceOptimizationParameters;
import eva2.optimization.go.InterfacePopulationChangedEventListener;
import eva2.optimization.population.InterfacePopulationChangedEventListener;
import eva2.optimization.operator.paramcontrol.ConstantParameters;
import eva2.optimization.operator.paramcontrol.InterfaceParameterControl;
import eva2.optimization.operator.postprocess.PostProcess;

View File

@ -6,7 +6,7 @@ import eva2.optimization.population.Population;
import eva2.util.annotation.Description;
/**
* This simple strategy simply archives all Pareto optimal solutions. This method is
* This eva2.problems.simple strategy simply archives all Pareto optimal solutions. This method is
* very prone to OutOfMemory errors!
*/
@Description("This is a straightforward strategy, which selects all dominating individuals (very prone to generate OutOfMemory errors).")

View File

@ -11,7 +11,7 @@ import eva2.util.annotation.Description;
/**
* Another simple archiving strategy not based on dominance but on the MaxiMin
* Another eva2.problems.simple archiving strategy not based on dominance but on the MaxiMin
* criterion. Doesn't work well on non-convex Pareto fronts.
*/
@Description("Maxi Min Archiving.")

View File

@ -10,7 +10,7 @@ import java.awt.event.WindowAdapter;
import java.awt.event.WindowEvent;
/**
* Self-organizing maps, a simple, but easy to visualize method
* Self-organizing maps, a eva2.problems.simple, but easy to visualize method
* for classification. The Dikel flag is an undocumented extension,
* which seems to work but is not published.
*/

View File

@ -1,6 +1,6 @@
package eva2.optimization.operator.mutation;
import eva2.optimization.go.InterfacePopulationChangedEventListener;
import eva2.optimization.population.InterfacePopulationChangedEventListener;
import eva2.optimization.individuals.InterfaceDataTypeDouble;
import eva2.optimization.population.Population;
import eva2.optimization.strategies.EvolutionStrategies;

View File

@ -5,7 +5,7 @@ import eva2.optimization.population.Population;
import eva2.util.annotation.Description;
/**
* A simple sum to calculate the selection probability.
* A eva2.problems.simple sum to calculate the selection probability.
* <p/>
* p(i is selected) = exp(-fitness(i))/sum_j(exp(-fitness(j)))
*/

View File

@ -5,7 +5,7 @@ import eva2.optimization.population.Population;
import eva2.util.annotation.Description;
/**
* A simple sum with a scaling factor.
* A eva2.problems.simple sum with a scaling factor.
*/
@Description("This is a standard normation method with scaling.")
public class SelProbStandardScaling extends AbstractSelProb implements java.io.Serializable {

View File

@ -1,12 +1,8 @@
package eva2.optimization.go;
package eva2.optimization.population;
/**
* Created by IntelliJ IDEA.
* User: streiche
* Date: 24.04.2003
* Time: 18:09:47
* To change this template use Options | File Templates.
*
*/
public interface InterfacePopulationChangedEventListener {

View File

@ -1,7 +1,6 @@
package eva2.optimization.population;
import eva2.gui.editor.GenericObjectEditor;
import eva2.optimization.go.InterfacePopulationChangedEventListener;
import eva2.optimization.individuals.*;
import eva2.optimization.operator.distancemetric.EuclideanMetric;
import eva2.optimization.operator.distancemetric.InterfaceDistanceMetric;
@ -2191,7 +2190,7 @@ public class Population extends ArrayList implements PopulationInterface, Clonea
/**
* Calculate the average of the distance of each individual to its closest
* neighbor in the population. The boolean parameter switches between
* range-normalized and simple euclidian distance. If calcVariance is true,
* range-normalized and eva2.problems.simple euclidian distance. If calcVariance is true,
* the variance is calculated and returned as second entry
*
* @param normalizedPhenoMetric

View File

@ -27,7 +27,7 @@ import java.util.*;
* The method plotCurrentResults should be implemented to plot further results per iteration.
* <p/>
* All displayable data is now routed through a single pipeline, which consists in a
* list of Objects assembled in the getOutputValues method. This allows all simple data types which are
* list of Objects assembled in the getOutputValues method. This allows all eva2.problems.simple data types which are
* provided by the external informer instances to be handled uniformly to the internally collected data, and
* thus they can be plotted and text-dumped in the same manner.
* Basic fields are identified by the enum GraphSelectionEnum and are available independently of additional
@ -221,7 +221,7 @@ public abstract class AbstractStatistics implements InterfaceTextListener, Inter
}
/**
* Return a simple String describing the current date and time.
* Return a eva2.problems.simple String describing the current date and time.
*
* @return
*/
@ -807,7 +807,7 @@ public abstract class AbstractStatistics implements InterfaceTextListener, Inter
}
/**
* Return all simple data fields collected internally. This must correspond to the
* Return all eva2.problems.simple data fields collected internally. This must correspond to the
* method {@link #getSimpleOutputHeader()}.
*
* @return

View File

@ -1,7 +1,7 @@
package eva2.optimization.statistics;
/**
* A very simple interface class to receive raw String data.
* A very eva2.problems.simple interface class to receive raw String data.
*
* @author mkron
*/

View File

@ -8,7 +8,7 @@ import java.util.ArrayList;
import java.util.List;
/**
* This simple statistics implementation can collect all Object data available during runs.
* This eva2.problems.simple statistics implementation can collect all Object data available during runs.
* Be aware that the memory requirements can be excessive depending on the data produced by
* the additional informers, and depending on the selected fields to be collected.
* Therefore, the default is not to log the data but just print it using the super class.

View File

@ -1,6 +1,6 @@
package eva2.optimization.strategies;
import eva2.optimization.go.InterfacePopulationChangedEventListener;
import eva2.optimization.population.InterfacePopulationChangedEventListener;
import eva2.optimization.population.Population;
import eva2.problems.F1Problem;
import eva2.problems.InterfaceOptimizationProblem;

View File

@ -1,15 +1,11 @@
package eva2.optimization.strategies;
import eva2.optimization.go.InterfacePopulationChangedEventListener;
import eva2.optimization.population.InterfacePopulationChangedEventListener;
import eva2.optimization.individuals.AbstractEAIndividual;
import eva2.optimization.operator.selection.replacement.ReplacementNondominatedSortingDistanceCrowding;
import eva2.optimization.population.InterfaceSolutionSet;
import eva2.optimization.population.Population;
import eva2.problems.AbstractMultiObjectiveOptimizationProblem;
import eva2.problems.AbstractOptimizationProblem;
import eva2.problems.F1Problem;
import eva2.problems.InterfaceOptimizationProblem;
import eva2.tools.math.RNG;
import eva2.util.annotation.Description;
import eva2.util.annotation.Parameter;

View File

@ -1,7 +1,7 @@
package eva2.optimization.strategies;
import eva2.gui.BeanInspector;
import eva2.optimization.go.InterfacePopulationChangedEventListener;
import eva2.optimization.population.InterfacePopulationChangedEventListener;
import eva2.optimization.individuals.AbstractEAIndividual;
import eva2.optimization.individuals.InterfaceDataTypeBinary;
import eva2.optimization.individuals.InterfaceGAIndividual;
@ -12,7 +12,6 @@ import eva2.optimization.population.Population;
import eva2.optimization.population.SolutionSet;
import eva2.problems.AbstractOptimizationProblem;
import eva2.problems.B1Problem;
import eva2.problems.InterfaceOptimizationProblem;
import eva2.tools.Pair;
import eva2.tools.math.RNG;
import eva2.util.annotation.Description;

View File

@ -1,6 +1,5 @@
package eva2.optimization.strategies;
import eva2.optimization.go.InterfacePopulationChangedEventListener;
import eva2.optimization.individuals.AbstractEAIndividual;
import eva2.optimization.individuals.InterfaceGAIndividual;
import eva2.optimization.operator.selection.InterfaceSelection;
@ -9,7 +8,6 @@ import eva2.optimization.operator.selection.SelectRandom;
import eva2.optimization.population.InterfaceSolutionSet;
import eva2.optimization.population.Population;
import eva2.optimization.population.SolutionSet;
import eva2.problems.B1Problem;
import eva2.problems.InterfaceOptimizationProblem;
import eva2.tools.math.RNG;

View File

@ -5,7 +5,7 @@ import eva2.gui.editor.GenericObjectEditor;
import eva2.gui.plot.GraphPointSet;
import eva2.gui.plot.Plot;
import eva2.gui.plot.TopoPlot;
import eva2.optimization.go.InterfacePopulationChangedEventListener;
import eva2.optimization.population.InterfacePopulationChangedEventListener;
import eva2.optimization.individuals.AbstractEAIndividual;
import eva2.optimization.individuals.EAIndividualComparator;
import eva2.optimization.individuals.InterfaceDataTypeDouble;

View File

@ -2,7 +2,7 @@ package eva2.optimization.strategies;
import eva2.gui.editor.GenericObjectEditor;
import eva2.optimization.enums.PostProcessMethod;
import eva2.optimization.go.InterfacePopulationChangedEventListener;
import eva2.optimization.population.InterfacePopulationChangedEventListener;
import eva2.optimization.operator.mutation.MutateESFixedStepSize;
import eva2.optimization.operator.postprocess.PostProcess;
import eva2.optimization.population.InterfaceSolutionSet;

View File

@ -2,7 +2,6 @@ package eva2.optimization.strategies;
import eva2.gui.BeanInspector;
import eva2.gui.editor.GenericObjectEditor;
import eva2.optimization.go.InterfacePopulationChangedEventListener;
import eva2.optimization.individuals.AbstractEAIndividual;
import eva2.optimization.individuals.InterfaceDataTypeDouble;
import eva2.optimization.operator.selection.replacement.ReplacementCrowding;
@ -12,8 +11,6 @@ import eva2.optimization.population.Population;
import eva2.optimization.population.SolutionSet;
import eva2.problems.AbstractMultiObjectiveOptimizationProblem;
import eva2.problems.AbstractOptimizationProblem;
import eva2.problems.F1Problem;
import eva2.problems.InterfaceOptimizationProblem;
import eva2.tools.EVAERROR;
import eva2.tools.math.Mathematics;
import eva2.tools.math.RNG;

View File

@ -2,7 +2,7 @@ package eva2.optimization.strategies;
import eva2.gui.editor.GenericObjectEditor;
import eva2.gui.plot.TopoPlot;
import eva2.optimization.go.InterfacePopulationChangedEventListener;
import eva2.optimization.population.InterfacePopulationChangedEventListener;
import eva2.optimization.individuals.AbstractEAIndividual;
import eva2.optimization.individuals.InterfaceDataTypeDouble;
import eva2.optimization.operator.cluster.ClusteringDynPeakIdent;

View File

@ -1,7 +1,7 @@
package eva2.optimization.strategies;
import eva2.gui.editor.GenericObjectEditor;
import eva2.optimization.go.InterfacePopulationChangedEventListener;
import eva2.optimization.population.InterfacePopulationChangedEventListener;
import eva2.optimization.individuals.AbstractEAIndividual;
import eva2.optimization.operator.mutation.MutateESRankMuCMA;
import eva2.optimization.operator.terminators.FitnessConvergenceTerminator;

View File

@ -1,13 +1,12 @@
package eva2.optimization.strategies;
import eva2.optimization.go.InterfacePopulationChangedEventListener;
import eva2.optimization.population.InterfacePopulationChangedEventListener;
import eva2.optimization.individuals.AbstractEAIndividual;
import eva2.optimization.operator.selection.InterfaceSelection;
import eva2.optimization.operator.selection.SelectEPTournaments;
import eva2.optimization.population.InterfaceSolutionSet;
import eva2.optimization.population.Population;
import eva2.optimization.population.SolutionSet;
import eva2.problems.F1Problem;
import eva2.problems.InterfaceOptimizationProblem;
import eva2.util.annotation.Description;

View File

@ -1,12 +1,10 @@
package eva2.optimization.strategies;
import eva2.optimization.go.InterfacePopulationChangedEventListener;
import eva2.optimization.individuals.AbstractEAIndividual;
import eva2.optimization.individuals.GAIndividualBinaryData;
import eva2.optimization.population.InterfaceSolutionSet;
import eva2.optimization.population.Population;
import eva2.optimization.population.SolutionSet;
import eva2.problems.B1Problem;
import eva2.problems.InterfaceOptimizationProblem;
import eva2.util.annotation.Description;
import eva2.util.annotation.Parameter;
@ -148,7 +146,7 @@ public class FloodAlgorithm extends AbstractOptimizer implements java.io.Seriali
}
/**
* This main method will start a simple hillclimber. No arguments necessary.
* This main method will start a eva2.problems.simple hillclimber. No arguments necessary.
*
* @param args
*/

View File

@ -1,6 +1,6 @@
package eva2.optimization.strategies;
import eva2.optimization.go.InterfacePopulationChangedEventListener;
import eva2.optimization.population.InterfacePopulationChangedEventListener;
import eva2.optimization.individuals.AbstractEAIndividual;
import eva2.optimization.operator.mutation.InterfaceAdaptOperatorGenerational;
import eva2.optimization.operator.selection.InterfaceSelection;
@ -9,7 +9,6 @@ import eva2.optimization.operator.selection.SelectXProbRouletteWheel;
import eva2.optimization.population.InterfaceSolutionSet;
import eva2.optimization.population.Population;
import eva2.optimization.population.SolutionSet;
import eva2.problems.F1Problem;
import eva2.problems.InterfaceOptimizationProblem;
import eva2.util.annotation.Description;

View File

@ -16,7 +16,7 @@ import eva2.util.annotation.Description;
*/
@Description("The Hill Climber uses the default EA mutation and initializing operators. If the population size is bigger than one a multi-start Hill Climber is performed.")
public class HillClimbing extends AbstractOptimizer implements java.io.Serializable {
// These variables are necessary for the simple testcase
// These variables are necessary for the eva2.problems.simple testcase
private InterfaceOptimizationProblem optimizationProblem = new B1Problem();
private InterfaceMutation mutator = null;

View File

@ -1,6 +1,6 @@
package eva2.optimization.strategies;
import eva2.optimization.go.InterfacePopulationChangedEventListener;
import eva2.optimization.population.InterfacePopulationChangedEventListener;
import eva2.optimization.population.InterfaceSolutionSet;
import eva2.optimization.population.Population;
import eva2.problems.InterfaceOptimizationProblem;

View File

@ -1,7 +1,7 @@
package eva2.optimization.strategies;
import eva2.gui.plot.Plot;
import eva2.optimization.go.InterfacePopulationChangedEventListener;
import eva2.optimization.population.InterfacePopulationChangedEventListener;
import eva2.optimization.individuals.ESIndividualDoubleData;
import eva2.optimization.operator.migration.*;
import eva2.optimization.population.InterfaceSolutionSet;

View File

@ -1,7 +1,7 @@
package eva2.optimization.strategies;
import eva2.gui.BeanInspector;
import eva2.optimization.go.InterfacePopulationChangedEventListener;
import eva2.optimization.population.InterfacePopulationChangedEventListener;
import eva2.optimization.individuals.AbstractEAIndividual;
import eva2.optimization.individuals.InterfaceDataTypeBinary;
import eva2.optimization.individuals.InterfaceGAIndividual;
@ -10,7 +10,6 @@ import eva2.optimization.population.Population;
import eva2.optimization.population.SolutionSet;
import eva2.problems.AbstractOptimizationProblem;
import eva2.problems.BKnapsackProblem;
import eva2.problems.InterfaceOptimizationProblem;
import eva2.tools.Pair;
import eva2.tools.math.SpecialFunction;
import eva2.util.annotation.Description;

View File

@ -1,7 +1,7 @@
package eva2.optimization.strategies;
import eva2.gui.BeanInspector;
import eva2.optimization.go.InterfacePopulationChangedEventListener;
import eva2.optimization.population.InterfacePopulationChangedEventListener;
import eva2.optimization.individuals.AbstractEAIndividual;
import eva2.optimization.individuals.InterfaceDataTypeBinary;
import eva2.optimization.individuals.InterfaceGAIndividual;

View File

@ -1,6 +1,6 @@
package eva2.optimization.strategies;
import eva2.optimization.go.InterfacePopulationChangedEventListener;
import eva2.optimization.population.InterfacePopulationChangedEventListener;
import eva2.optimization.individuals.AbstractEAIndividual;
import eva2.optimization.operator.selection.InterfaceSelection;
import eva2.optimization.operator.selection.SelectBestIndividuals;

View File

@ -1,17 +1,15 @@
package eva2.optimization.strategies;
import eva2.optimization.go.InterfacePopulationChangedEventListener;
import eva2.optimization.individuals.AbstractEAIndividual;
import eva2.optimization.individuals.GAIndividualBinaryData;
import eva2.optimization.population.InterfaceSolutionSet;
import eva2.optimization.population.Population;
import eva2.optimization.population.SolutionSet;
import eva2.problems.B1Problem;
import eva2.problems.InterfaceOptimizationProblem;
import eva2.util.annotation.Description;
/**
* The simple random or Monte-Carlo search, simple but useful to evaluate the
* The eva2.problems.simple random or Monte-Carlo search, eva2.problems.simple but useful to evaluate the
* complexity of the search space. This implements a Random Walk Search using
* the initialization method of the problem instance, meaning that the random
* characteristics may be problem dependent.
@ -118,7 +116,7 @@ public class MonteCarloSearch extends AbstractOptimizer implements java.io.Seria
}
/**
* This main method will start a simple hillclimber. No arguments necessary.
* This main method will start a eva2.problems.simple hillclimber. No arguments necessary.
*
* @param args
*/

View File

@ -1,7 +1,6 @@
package eva2.optimization.strategies;
import eva2.gui.editor.GenericObjectEditor;
import eva2.optimization.go.InterfacePopulationChangedEventListener;
import eva2.optimization.individuals.AbstractEAIndividual;
import eva2.optimization.operator.archiving.ArchivingNSGAII;
import eva2.optimization.operator.archiving.ArchivingNSGAIISMeasure;
@ -10,7 +9,6 @@ import eva2.optimization.population.InterfaceSolutionSet;
import eva2.optimization.population.Population;
import eva2.optimization.population.SolutionSet;
import eva2.problems.AbstractOptimizationProblem;
import eva2.problems.InterfaceOptimizationProblem;
import eva2.util.annotation.Description;
import java.io.Serializable;

View File

@ -1,6 +1,6 @@
package eva2.optimization.strategies;
import eva2.optimization.go.InterfacePopulationChangedEventListener;
import eva2.optimization.population.InterfacePopulationChangedEventListener;
import eva2.optimization.individuals.AbstractEAIndividual;
import eva2.optimization.individuals.EAIndividualComparator;
import eva2.optimization.operator.archiving.ArchivingNSGAII;

View File

@ -1,7 +1,7 @@
package eva2.optimization.strategies;
import eva2.gui.BeanInspector;
import eva2.optimization.go.InterfacePopulationChangedEventListener;
import eva2.optimization.population.InterfacePopulationChangedEventListener;
import eva2.optimization.individuals.AbstractEAIndividual;
import eva2.optimization.individuals.InterfaceDataTypeDouble;
import eva2.optimization.population.InterfaceSolutionSet;
@ -14,7 +14,6 @@ import eva2.tools.math.Mathematics;
import eva2.util.annotation.Description;
import java.io.Serializable;
import java.util.Vector;
/**
* Nelder-Mead-Simplex does not guarantee an equal number of evaluations within

View File

@ -4,7 +4,6 @@ import eva2.OptimizerFactory;
import eva2.gui.editor.GenericObjectEditor;
import eva2.gui.plot.TopoPlot;
import eva2.optimization.enums.PSOTopology;
import eva2.optimization.go.InterfacePopulationChangedEventListener;
import eva2.optimization.individuals.AbstractEAIndividual;
import eva2.optimization.individuals.InterfaceDataTypeDouble;
import eva2.optimization.modules.OptimizationParameters;

View File

@ -2,7 +2,6 @@ package eva2.optimization.strategies;
import eva2.gui.editor.GenericObjectEditor;
import eva2.gui.plot.Plot;
import eva2.optimization.go.InterfacePopulationChangedEventListener;
import eva2.optimization.individuals.AbstractEAIndividual;
import eva2.optimization.individuals.InterfaceDataTypeDouble;
import eva2.optimization.operator.mutation.MutateESCorrVector;
@ -13,7 +12,6 @@ import eva2.optimization.population.InterfaceSolutionSet;
import eva2.optimization.population.Population;
import eva2.optimization.population.SolutionSet;
import eva2.problems.AbstractOptimizationProblem;
import eva2.problems.F1Problem;
import eva2.problems.InterfaceOptimizationProblem;
import eva2.util.annotation.Description;
import eva2.util.annotation.Hidden;

View File

@ -5,7 +5,7 @@ import eva2.gui.editor.GenericObjectEditor;
import eva2.gui.plot.Plot;
import eva2.gui.plot.TopoPlot;
import eva2.optimization.enums.PSOTopology;
import eva2.optimization.go.InterfacePopulationChangedEventListener;
import eva2.optimization.population.InterfacePopulationChangedEventListener;
import eva2.optimization.individuals.AbstractEAIndividual;
import eva2.optimization.individuals.EAIndividualComparator;
import eva2.optimization.individuals.InterfaceDataTypeDouble;

View File

@ -1,6 +1,6 @@
package eva2.optimization.strategies;
import eva2.optimization.go.InterfacePopulationChangedEventListener;
import eva2.optimization.population.InterfacePopulationChangedEventListener;
import eva2.optimization.individuals.AbstractEAIndividual;
import eva2.optimization.individuals.InterfaceGAIndividual;
import eva2.optimization.operator.selection.InterfaceSelection;
@ -20,7 +20,7 @@ import java.util.logging.Logger;
/**
* Population based incremental learning in the PSM by Monmarche version with
* also allows to simulate ant systems due to the flexible update rule of V. But
* both are limited to binary genotypes. This is a simple implementation of
* both are limited to binary genotypes. This is a eva2.problems.simple implementation of
* Population Based Incremental Learning.
* <p/>
* Nicolas Monmarché , Eric Ramat , Guillaume Dromel , Mohamed Slimane , Gilles
@ -31,7 +31,7 @@ import java.util.logging.Logger;
public class PopulationBasedIncrementalLearning extends AbstractOptimizer implements java.io.Serializable {
private final static Logger LOGGER = Logger.getLogger(PopulationBasedIncrementalLearning.class.getName());
// These variables are necessary for the simple testcase
// These variables are necessary for the eva2.problems.simple testcase
private InterfaceOptimizationProblem optimizationProblem = new B1Problem();
private boolean useElitism = true;
private InterfaceSelection selectionOperator = new SelectBestIndividuals();

View File

@ -4,7 +4,7 @@ import eva2.OptimizerFactory;
import eva2.OptimizerRunnable;
import eva2.gui.BeanInspector;
import eva2.gui.editor.GenericObjectEditor;
import eva2.optimization.go.InterfacePopulationChangedEventListener;
import eva2.optimization.population.InterfacePopulationChangedEventListener;
import eva2.optimization.individuals.AbstractEAIndividual;
import eva2.optimization.individuals.InterfaceDataTypeDouble;
import eva2.optimization.modules.OptimizationParameters;

View File

@ -10,7 +10,7 @@ import eva2.tools.math.RNG;
import eva2.util.annotation.Description;
/**
* Simulated Annealing by Nelder and Mead, a simple yet efficient local search
* Simulated Annealing by Nelder and Mead, a eva2.problems.simple yet efficient local search
* method. But to become less prone to premature convergence the cooling rate
* has to be tuned to the optimization problem at hand. Again the population
* size gives the number of multi-starts.
@ -149,7 +149,7 @@ public class SimulatedAnnealing extends AbstractOptimizer implements java.io.Ser
}
/**
* This main method will start a simple hillclimber. No arguments necessary.
* This main method will start a eva2.problems.simple hillclimber. No arguments necessary.
*
* @param args
*/

View File

@ -14,7 +14,7 @@ import eva2.problems.InterfaceOptimizationProblem;
import eva2.util.annotation.Description;
/**
* A simple implementation of the steady-state GA with variable replacement
* A eva2.problems.simple implementation of the steady-state GA with variable replacement
* schemes. To reduce the logging effort population.size() optimization steps
* are performed each time optimize() is called.
*/

View File

@ -1,12 +1,10 @@
package eva2.optimization.strategies;
import eva2.optimization.go.InterfacePopulationChangedEventListener;
import eva2.optimization.individuals.AbstractEAIndividual;
import eva2.optimization.individuals.GAIndividualBinaryData;
import eva2.optimization.population.InterfaceSolutionSet;
import eva2.optimization.population.Population;
import eva2.optimization.population.SolutionSet;
import eva2.problems.B1Problem;
import eva2.problems.InterfaceOptimizationProblem;
import eva2.util.annotation.Description;
@ -142,7 +140,7 @@ public class ThresholdAlgorithm extends AbstractOptimizer implements java.io.Ser
}
/**
* This main method will start a simple hillclimber. No arguments necessary.
* This main method will start a eva2.problems.simple hillclimber. No arguments necessary.
*
* @param args
*/

View File

@ -2,7 +2,7 @@ package eva2.optimization.strategies;
import eva2.gui.editor.GenericObjectEditor;
import eva2.gui.plot.Plot;
import eva2.optimization.go.InterfacePopulationChangedEventListener;
import eva2.optimization.population.InterfacePopulationChangedEventListener;
import eva2.optimization.individuals.AbstractEAIndividual;
import eva2.optimization.individuals.InterfaceDataTypeDouble;
import eva2.optimization.population.InterfaceSolutionSet;

View File

@ -1,14 +1,12 @@
package eva2.optimization.strategies;
import eva2.gui.PropertyDoubleArray;
import eva2.optimization.go.InterfacePopulationChangedEventListener;
import eva2.optimization.individuals.AbstractEAIndividual;
import eva2.optimization.operator.moso.MOSOWeightedFitness;
import eva2.optimization.population.InterfaceSolutionSet;
import eva2.optimization.population.Population;
import eva2.optimization.population.SolutionSet;
import eva2.problems.AbstractMultiObjectiveOptimizationProblem;
import eva2.problems.FM0Problem;
import eva2.problems.InterfaceOptimizationProblem;
import eva2.util.annotation.Description;

View File

@ -82,7 +82,7 @@ public abstract class AbstractMultiModalProblemKnown extends AbstractProblemDoub
}
/**
* Ths method allows you to evaluate a simple bit string to determine the fitness
* Ths method allows you to evaluate a eva2.problems.simple bit string to determine the fitness
*
* @param x The n-dimensional input vector
* @return The m-dimensional output vector.

View File

@ -70,7 +70,7 @@ public abstract class AbstractProblemInteger extends AbstractOptimizationProblem
}
/**
* Evaluate a simple integer array to determine the fitness.
* Evaluate a eva2.problems.simple integer array to determine the fitness.
*
* @param x The n-dimensional input vector
* @return The m-dimensional output vector.

View File

@ -40,7 +40,7 @@ public class B1Problem extends AbstractProblemBinary implements java.io.Serializ
}
/**
* This is a simple method that evaluates a given Individual. The fitness
* This is a eva2.problems.simple method that evaluates a given Individual. The fitness
* values of the individual will be set inside this method.
*
* @param b The BitSet that is to be evaluated.

View File

@ -258,7 +258,7 @@ public class BKnapsackProblem extends AbstractProblemBinary implements java.io.S
}
/**
* This is a simple method that evaluates a given Individual. The fitness
* This is a eva2.problems.simple method that evaluates a given Individual. The fitness
* values of the individual will be set inside this method.
*
* @param b The BitSet that is to be evaluated.

View File

@ -9,7 +9,7 @@ import java.io.Serializable;
import java.util.Vector;
/**
* Himmelblau's nonlinear optimization problem with 5 simple boundary constraints and 3 nonlinear boundary constraints.
* Himmelblau's nonlinear optimization problem with 5 eva2.problems.simple boundary constraints and 3 nonlinear boundary constraints.
*/
@Description("Himmelblau's nonlinear optimization problem")
public class ConstrHimmelblauProblem extends AbstractProblemDouble implements Serializable {

View File

@ -41,7 +41,7 @@ public class F1Problem extends AbstractProblemDoubleOffset implements Interface2
}
/**
* This method allows you to evaluate a simple bit string to determine the fitness
* This method allows you to evaluate a eva2.problems.simple bit string to determine the fitness
*
* @param x The n-dimensional input vector
* @return The m-dimensional output vector.

View File

@ -40,7 +40,7 @@ public class F22Problem extends AbstractProblemDoubleOffset implements Interface
}
/**
* This method allows you to evaluate a simple bit string to determine the fitness
* This method allows you to evaluate a eva2.problems.simple bit string to determine the fitness
*
* @param x The n-dimensional input vector
* @return The m-dimensional output vector.

View File

@ -327,7 +327,7 @@ public class FLensProblem extends AbstractOptimizationProblem
}
/**
* Ths method allows you to evaluate a simple bit string to determine the fitness
* Ths method allows you to evaluate a eva2.problems.simple bit string to determine the fitness
*
* @param x The n-dimensional input vector
* @return The m-dimensional output vector.

View File

@ -28,7 +28,7 @@ public class I1Problem extends AbstractProblemInteger implements java.io.Seriali
}
/**
* Ths method allows you to evaluate a simple bit string to determine the fitness
* Ths method allows you to evaluate a eva2.problems.simple bit string to determine the fitness
*
* @param x The n-dimensional input vector
* @return The m-dimensional output vector.

View File

@ -152,7 +152,7 @@ public class TF1Problem extends AbstractMultiObjectiveOptimizationProblem implem
}
/**
* Ths method allows you to evaluate a simple bit string to determine the fitness
* Ths method allows you to evaluate a eva2.problems.simple bit string to determine the fitness
*
* @param x The n-dimensional input vector
* @return The m-dimensional output vector.

View File

@ -1,7 +1,7 @@
package eva2.problems.simple;
/**
* A simple interface to easily include new optimization problems in Java into the
* A eva2.problems.simple interface to easily include new optimization problems in Java into the
* EvA framework.
*/
public interface InterfaceSimpleProblem<T> {

View File

@ -332,7 +332,7 @@ public class MultirunRefiner {
// }
/**
* A simple method to read doubles from a string.
* A eva2.problems.simple method to read doubles from a string.
*
* @param searchme The string to be searched.
* @return The array of doubles found.

View File

@ -8,7 +8,7 @@ package eva2.tools;
import javax.swing.filechooser.FileFilter;
/**A simple File Filter for *.txt files.
/**A eva2.problems.simple File Filter for *.txt files.
*/
public class TXTFileFilter extends FileFilter {

View File

@ -3,7 +3,7 @@ package eva2.tools.chart2d;
import java.awt.*;
/**
* A simple interface which can be used to paint certain icons at DPoints
* A eva2.problems.simple interface which can be used to paint certain icons at DPoints
* ( @see chart2d.DPoint.setIcon or chart2d.DPointSet.setIcon ).
* Different points may be easier recognized in a complex graph.
* The container does not guarantee that the whole icon is visible in the graph

View File

@ -1710,7 +1710,7 @@ public class JMatLink extends Thread {
// this is a concurrent situation.
// The solution is simple: I always use a locking-mechanism to wait for the
// The solution is eva2.problems.simple: I always use a locking-mechanism to wait for the
// data. The main thread will release the lock and the calling method can

View File

@ -22,7 +22,7 @@ public class SerializerTest {
@Before
public void setUp() {
// Create a simple object graph
// Create a eva2.problems.simple object graph
dataStructObject = new ExampleDataStruct();
dataStructObject.message = "hello world";
dataStructObject.data = new int[]{1, 2, 3, 4};
@ -90,7 +90,7 @@ public class SerializerTest {
}
/**
* This is a simple serializable data structure that we use below for testing the methods above
* This is a eva2.problems.simple serializable data structure that we use below for testing the methods above
*
*/
class ExampleDataStruct implements Serializable {