Code cleanup of PDDifferentialEvolution class. Removed commented code.
This commit is contained in:
parent
ef6d2839f1
commit
9c405a12ee
@ -100,7 +100,6 @@ public class PDDifferentialEvolution implements InterfaceOptimizer, java.io.Seri
|
|||||||
@Override
|
@Override
|
||||||
public void init() {
|
public void init() {
|
||||||
this.m_Problem.initPopulation(this.m_Population);
|
this.m_Problem.initPopulation(this.m_Population);
|
||||||
// children = new Population(m_Population.size());
|
|
||||||
this.evaluatePopulation(this.m_Population);
|
this.evaluatePopulation(this.m_Population);
|
||||||
this.firePropertyChangedEvent(Population.nextGenerationPerformed);
|
this.firePropertyChangedEvent(Population.nextGenerationPerformed);
|
||||||
}
|
}
|
||||||
@ -123,8 +122,6 @@ public class PDDifferentialEvolution implements InterfaceOptimizer, java.io.Seri
|
|||||||
this.evaluatePopulation(this.m_Population);
|
this.evaluatePopulation(this.m_Population);
|
||||||
this.firePropertyChangedEvent(Population.nextGenerationPerformed);
|
this.firePropertyChangedEvent(Population.nextGenerationPerformed);
|
||||||
}
|
}
|
||||||
// if (reset) this.m_Population.init();
|
|
||||||
// else children = new Population(m_Population.size());
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
@ -283,26 +280,6 @@ public class PDDifferentialEvolution implements InterfaceOptimizer, java.io.Seri
|
|||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
|
||||||
* This method returns two parents to the original individual
|
|
||||||
*
|
|
||||||
* @param pop The population to choose from
|
|
||||||
* @return the delta vector
|
|
||||||
*/
|
|
||||||
// private double[][] chooseRandomParents(Population pop) {
|
|
||||||
// InterfaceESIndividual indy1, indy2;
|
|
||||||
// double[][] result = new double[2][];
|
|
||||||
// try {
|
|
||||||
// indy1 = (InterfaceESIndividual)pop.get(RNG.randomInt(0, pop.size()-1));
|
|
||||||
// indy2 = (InterfaceESIndividual)pop.get(RNG.randomInt(0, pop.size()-1));
|
|
||||||
// } catch (java.lang.ClassCastException e) {
|
|
||||||
// System.out.println("Differential Evolution currently requires InterfaceESIndividual as basic data type!");
|
|
||||||
// return result;
|
|
||||||
// }
|
|
||||||
// result[0] = indy1.getDGenotype();
|
|
||||||
// result[1] = indy2.getDGenotype();
|
|
||||||
// return result;
|
|
||||||
// }
|
|
||||||
/**
|
/**
|
||||||
* This method will generate one new individual from the given population
|
* This method will generate one new individual from the given population
|
||||||
*
|
*
|
||||||
@ -310,7 +287,6 @@ public class PDDifferentialEvolution implements InterfaceOptimizer, java.io.Seri
|
|||||||
* @return AbstractEAIndividual
|
* @return AbstractEAIndividual
|
||||||
*/
|
*/
|
||||||
public AbstractEAIndividual generateNewIndividual(Population pop, int parentIndex) {
|
public AbstractEAIndividual generateNewIndividual(Population pop, int parentIndex) {
|
||||||
// int firstParentIndex;
|
|
||||||
AbstractEAIndividual indy;
|
AbstractEAIndividual indy;
|
||||||
InterfaceDataTypeDouble esIndy;
|
InterfaceDataTypeDouble esIndy;
|
||||||
|
|
||||||
@ -328,7 +304,6 @@ public class PDDifferentialEvolution implements InterfaceOptimizer, java.io.Seri
|
|||||||
esIndy = (InterfaceDataTypeDouble) indy;
|
esIndy = (InterfaceDataTypeDouble) indy;
|
||||||
} catch (java.lang.ClassCastException e) {
|
} catch (java.lang.ClassCastException e) {
|
||||||
throw new RuntimeException("Differential Evolution currently requires InterfaceESIndividual as basic data type!");
|
throw new RuntimeException("Differential Evolution currently requires InterfaceESIndividual as basic data type!");
|
||||||
// return (AbstractEAIndividual)((AbstractEAIndividual)pop.get(RNG.randomInt(0, pop.size()-1))).getClone();
|
|
||||||
}
|
}
|
||||||
double[] nX, vX, oX;
|
double[] nX, vX, oX;
|
||||||
oX = esIndy.getDoubleData();
|
oX = esIndy.getDoubleData();
|
||||||
@ -517,10 +492,8 @@ public class PDDifferentialEvolution implements InterfaceOptimizer, java.io.Seri
|
|||||||
*
|
*
|
||||||
*/
|
*/
|
||||||
public void optimizeGenerational() {
|
public void optimizeGenerational() {
|
||||||
// AbstractEAIndividual indy = null, orig;
|
|
||||||
int parentIndex;
|
int parentIndex;
|
||||||
// required for dynamic problems especially
|
// required for dynamic problems especially
|
||||||
// m_Problem.evaluatePopulationStart(m_Population);
|
|
||||||
if (children == null) {
|
if (children == null) {
|
||||||
children = new Population(m_Population.size());
|
children = new Population(m_Population.size());
|
||||||
} else {
|
} else {
|
||||||
@ -570,7 +543,6 @@ public class PDDifferentialEvolution implements InterfaceOptimizer, java.io.Seri
|
|||||||
ReplacementCrowding repl = new ReplacementCrowding();
|
ReplacementCrowding repl = new ReplacementCrowding();
|
||||||
repl.insertIndividual(indy, m_Population, null);
|
repl.insertIndividual(indy, m_Population, null);
|
||||||
} else {
|
} else {
|
||||||
// index = RNG.randomInt(0, this.m_Population.size()-1);
|
|
||||||
if (!compareToParent) {
|
if (!compareToParent) {
|
||||||
parentIndex = RNG.randomInt(0, this.m_Population.size() - 1);
|
parentIndex = RNG.randomInt(0, this.m_Population.size() - 1);
|
||||||
}
|
}
|
||||||
@ -620,8 +592,6 @@ public class PDDifferentialEvolution implements InterfaceOptimizer, java.io.Seri
|
|||||||
index = RNG.randomInt(0, this.m_Population.size() - 1);
|
index = RNG.randomInt(0, this.m_Population.size() - 1);
|
||||||
}
|
}
|
||||||
indy = generateNewIndividual(m_Population, index);
|
indy = generateNewIndividual(m_Population, index);
|
||||||
// if (cyclePop) indy = this.generateNewIndividual(this.m_Population, i);
|
|
||||||
// else indy = this.generateNewIndividual(this.m_Population, -1);
|
|
||||||
this.m_Problem.evaluate(indy);
|
this.m_Problem.evaluate(indy);
|
||||||
this.m_Population.incrFunctionCalls();
|
this.m_Population.incrFunctionCalls();
|
||||||
if (nextDoomed >= 0) { // this one is lucky, may replace an 'old' one
|
if (nextDoomed >= 0) { // this one is lucky, may replace an 'old' one
|
||||||
@ -629,19 +599,13 @@ public class PDDifferentialEvolution implements InterfaceOptimizer, java.io.Seri
|
|||||||
nextDoomed = getNextDoomed(m_Population, nextDoomed + 1);
|
nextDoomed = getNextDoomed(m_Population, nextDoomed + 1);
|
||||||
} else {
|
} else {
|
||||||
if (m_Problem instanceof AbstractMultiObjectiveOptimizationProblem) {
|
if (m_Problem instanceof AbstractMultiObjectiveOptimizationProblem) {
|
||||||
|
|
||||||
if (indy.isDominatingDebConstraints(m_Population.getEAIndividual(index))) { //child dominates the parent replace the parent
|
if (indy.isDominatingDebConstraints(m_Population.getEAIndividual(index))) { //child dominates the parent replace the parent
|
||||||
m_Population.replaceIndividualAt(index, indy);
|
m_Population.replaceIndividualAt(index, indy);
|
||||||
} else if (!(m_Population.getEAIndividual(index).isDominatingDebConstraints(indy))) { //do nothing if parent dominates the child use crowding if neither one dominates the other one
|
} else if (!(m_Population.getEAIndividual(index).isDominatingDebConstraints(indy))) { //do nothing if parent dominates the child use crowding if neither one dominates the other one
|
||||||
ReplacementNondominatedSortingDistanceCrowding repl = new ReplacementNondominatedSortingDistanceCrowding();
|
ReplacementNondominatedSortingDistanceCrowding repl = new ReplacementNondominatedSortingDistanceCrowding();
|
||||||
repl.insertIndividual(indy, m_Population, null);
|
repl.insertIndividual(indy, m_Population, null);
|
||||||
}
|
}
|
||||||
// ReplacementCrowding repl = new ReplacementCrowding();
|
|
||||||
// repl.insertIndividual(indy, m_Population, null);
|
|
||||||
|
|
||||||
|
|
||||||
} else {
|
} else {
|
||||||
// index = RNG.randomInt(0, this.m_Population.size()-1);
|
|
||||||
if (!compareToParent) {
|
if (!compareToParent) {
|
||||||
index = RNG.randomInt(0, this.m_Population.size() - 1);
|
index = RNG.randomInt(0, this.m_Population.size() - 1);
|
||||||
}
|
}
|
||||||
@ -653,43 +617,6 @@ public class PDDifferentialEvolution implements InterfaceOptimizer, java.io.Seri
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
//////// this was a non-steady-state-version
|
|
||||||
// if (children==null) children = new Population(m_Population.size());
|
|
||||||
// for (int i = 0; i < this.m_Population.size(); i++) {
|
|
||||||
// indy = this.generateNewIndividual(this.m_Population);
|
|
||||||
// this.m_Problem.evaluate(indy);
|
|
||||||
// this.m_Population.incrFunctionCalls();
|
|
||||||
// children.add(indy);
|
|
||||||
// }
|
|
||||||
// int nextDoomed = getNextDoomed(m_Population, 0);
|
|
||||||
//
|
|
||||||
// for (int i=0; i<this.m_Population.size(); i++) {
|
|
||||||
// indy = (AbstractEAIndividual)children.get(i);
|
|
||||||
// if (nextDoomed >= 0) { // kid is lucky, it may replace an 'old' individual
|
|
||||||
// m_Population.replaceIndividualAt(nextDoomed, indy);
|
|
||||||
// nextDoomed = getNextDoomed(m_Population, nextDoomed+1);
|
|
||||||
// } else { // duel with random one
|
|
||||||
// index = RNG.randomInt(0, this.m_Population.size()-1);
|
|
||||||
// org = (AbstractEAIndividual)this.m_Population.get(index);
|
|
||||||
// // if (envHasChanged) this.m_Problem.evaluate(org);
|
|
||||||
// if (indy.isDominatingDebConstraints(org)) {
|
|
||||||
// this.m_Population.replaceIndividualAt(index, indy);
|
|
||||||
// }
|
|
||||||
// }
|
|
||||||
// }
|
|
||||||
// children.clear();
|
|
||||||
//////// this was the original version
|
|
||||||
// for (int i = 0; i < this.m_Population.size(); i++) {
|
|
||||||
// indy = this.generateNewIndividual(this.m_Population);
|
|
||||||
// this.m_Problem.evaluate(indy);
|
|
||||||
// this.m_Population.incrFunctionCalls();
|
|
||||||
// index = RNG.randomInt(0, this.m_Population.size()-1);
|
|
||||||
// org = (AbstractEAIndividual)this.m_Population.get(index);
|
|
||||||
// if (indy.isDominatingDebConstraints(org)) {
|
|
||||||
// this.m_Population.remove(index);
|
|
||||||
// this.m_Population.add(index, indy);
|
|
||||||
// }
|
|
||||||
// }
|
|
||||||
m_Problem.evaluatePopulationEnd(m_Population);
|
m_Problem.evaluatePopulationEnd(m_Population);
|
||||||
this.m_Population.incrGeneration();
|
this.m_Population.incrGeneration();
|
||||||
this.firePropertyChangedEvent(Population.nextGenerationPerformed);
|
this.firePropertyChangedEvent(Population.nextGenerationPerformed);
|
||||||
@ -1004,17 +931,6 @@ public class PDDifferentialEvolution implements InterfaceOptimizer, java.io.Seri
|
|||||||
return "If true, values for k, f, lambda are randomly sampled around +/- 20% of the given values.";
|
return "If true, values for k, f, lambda are randomly sampled around +/- 20% of the given values.";
|
||||||
}
|
}
|
||||||
|
|
||||||
// public boolean isCyclePop() {
|
|
||||||
// return cyclePop;
|
|
||||||
// }
|
|
||||||
//
|
|
||||||
// public void setCyclePop(boolean cyclePop) {
|
|
||||||
// this.cyclePop = cyclePop;
|
|
||||||
// }
|
|
||||||
//
|
|
||||||
// public String cyclePopTipText() {
|
|
||||||
// return "Use all individuals as parents in cyclic sequence instead of randomly.";
|
|
||||||
// }
|
|
||||||
public boolean isCompareToParent() {
|
public boolean isCompareToParent() {
|
||||||
return compareToParent;
|
return compareToParent;
|
||||||
}
|
}
|
||||||
|
Loading…
x
Reference in New Issue
Block a user