Killed a bunch of typos.

This commit is contained in:
Marcel Kronfeld 2008-06-04 08:20:42 +00:00
parent de3b52ddfc
commit a09166f20e
65 changed files with 132 additions and 132 deletions

View File

@ -207,7 +207,7 @@ public class EvAClient implements RemoteStateListener, Serializable {
try {
m_Frame.setIconImage(Toolkit.getDefaultToolkit().createImage(bytes));
} catch (java.lang.NullPointerException e) {
System.out.println("Could not find EvA2 icon, please move rescoure folder to working directory!");
System.out.println("Could not find EvA2 icon, please move resources folder to working directory!");
}
m_Frame.setTitle("EvA2 workbench");
@ -426,7 +426,7 @@ public class EvAClient implements RemoteStateListener, Serializable {
} catch (ClassNotFoundException exc) {} catch (InstantiationException exc) {} catch (UnsupportedLookAndFeelException exc) {} catch (
IllegalAccessException exc) {}
}
m_mnuModule = new JExtMenu("Select &module");
m_mnuModule = new JExtMenu("&Module");
m_mnuModule.add(m_actModuleLoad);
////////////////////////////////////////////////////////////////
@ -784,7 +784,7 @@ final class SplashScreen extends Frame {
splashWindow.setLocation(screenSize.width / 2 - splashWindow.getSize().width / 2, screenSize.height / 2 - splashWindow.getSize().height / 2);
splashWindow.setVisible(true);
} catch (java.lang.NullPointerException e) {
System.err.println("Could not find EvA2 splash screen, please move rescoure folder to working directory!");
System.err.println("Could not find EvA2 splash screen, please move resources folder to working directory!");
}
}

View File

@ -156,7 +156,7 @@ public class GenericOptimizationObjectivesEditor extends JPanel implements Prope
try {
this.m_Delete[i] = new JButton("", new ImageIcon(Toolkit.getDefaultToolkit().createImage(bytes)));
} catch (java.lang.NullPointerException e) {
System.out.println("Could not find Sub24 icon, please move rescoure folder to working directory!");
System.out.println("Could not find Sub24 icon, please move resources folder to working directory!");
this.m_Delete[i] = new JButton("Sub");
}
this.m_Delete[i].addActionListener(deleteTarget);

View File

@ -179,7 +179,7 @@ public class GenericOptimizationObjectivesWithParamEditor extends JPanel impleme
try {
this.m_Delete[i] = new JButton("", new ImageIcon(Toolkit.getDefaultToolkit().createImage(bytes)));
} catch (java.lang.NullPointerException e) {
System.out.println("Could not find Sub24 icon, please move rescoure folder to working directory!");
System.out.println("Could not find Sub24 icon, please move resources folder to working directory!");
this.m_Delete[i] = new JButton("Sub");
}
this.m_Delete[i].addActionListener(deleteTarget);

View File

@ -96,7 +96,7 @@ public class GenericRemoteServersEditor extends JPanel implements PropertyEditor
try {
tmpB = new JButton("", new ImageIcon(Toolkit.getDefaultToolkit().createImage(bytes)));
} catch (java.lang.NullPointerException e) {
System.out.println("Could not find Add24 icon, please move rescoure folder to working directory!");
System.out.println("Could not find Add24 icon, please move resources folder to working directory!");
tmpB = new JButton("Add");
}
tmpB.addActionListener(addServer);
@ -111,7 +111,7 @@ public class GenericRemoteServersEditor extends JPanel implements PropertyEditor
try {
tmpB = new JButton("Load", new ImageIcon(Toolkit.getDefaultToolkit().createImage(bytes)));
} catch (java.lang.NullPointerException e) {
System.out.println("Could not find Export24 icon, please move rescoure folder to working directory!");
System.out.println("Could not find Export24 icon, please move resources folder to working directory!");
tmpB = new JButton("Load");
}
tmpB.addActionListener(loadServers);
@ -125,7 +125,7 @@ public class GenericRemoteServersEditor extends JPanel implements PropertyEditor
try {
tmpB = new JButton("Save", new ImageIcon(Toolkit.getDefaultToolkit().createImage(bytes)));
} catch (java.lang.NullPointerException e) {
System.out.println("Could not find Import24 icon, please move rescoure folder to working directory!");
System.out.println("Could not find Import24 icon, please move resources folder to working directory!");
tmpB = new JButton("Save");
}
tmpB.addActionListener(saveServers);
@ -139,7 +139,7 @@ public class GenericRemoteServersEditor extends JPanel implements PropertyEditor
try {
tmpB = new JButton("Update Status", new ImageIcon(Toolkit.getDefaultToolkit().createImage(bytes)));
} catch (java.lang.NullPointerException e) {
System.out.println("Could not find Refresh24 icon, please move rescoure folder to working directory!");
System.out.println("Could not find Refresh24 icon, please move resources folder to working directory!");
tmpB = new JButton("Update Status");
}
tmpB.addActionListener(updateServers);
@ -153,7 +153,7 @@ public class GenericRemoteServersEditor extends JPanel implements PropertyEditor
try {
tmpB = new JButton("Start Server", new ImageIcon(Toolkit.getDefaultToolkit().createImage(bytes)));
} catch (java.lang.NullPointerException e) {
System.out.println("Could not find Play24 icon, please move rescoure folder to working directory!");
System.out.println("Could not find Play24 icon, please move resources folder to working directory!");
tmpB = new JButton("Start Server");
}
tmpB.addActionListener(startServers);
@ -167,7 +167,7 @@ public class GenericRemoteServersEditor extends JPanel implements PropertyEditor
try {
tmpB = new JButton("Stop Server", new ImageIcon(Toolkit.getDefaultToolkit().createImage(bytes)));
} catch (java.lang.NullPointerException e) {
System.out.println("Could not find Stop24 icon, please move rescoure folder to working directory!");
System.out.println("Could not find Stop24 icon, please move resources folder to working directory!");
tmpB = new JButton("Stop Server");
}
tmpB.addActionListener(killServers);

View File

@ -97,7 +97,7 @@ public class HtmlDemo {
try {
frame.setIconImage(Toolkit.getDefaultToolkit().createImage(bytes));
} catch (java.lang.NullPointerException e) {
System.err.println("Could not find EvA2 icon, please move rescoure folder to working directory!");
System.err.println("Could not find EvA2 icon, please move resources folder to working directory!");
}
JScrollPane scroller = new JScrollPane();
JViewport vp = scroller.getViewport();

View File

@ -107,7 +107,7 @@ public class JTabbedModuleFrame implements Serializable {
try {
m_Frame.setIconImage(Toolkit.getDefaultToolkit().createImage(bytes));
} catch (java.lang.NullPointerException e) {
System.out.println("Could not find EvA2 icon, please move resource folder to working directory!");
System.out.println("Could not find EvA2 icon, please move resources folder to working directory!");
}
JPanel m_SuperPanel = createContentPane();

View File

@ -111,7 +111,7 @@ Serializable {
try {
frame.setIconImage(Toolkit.getDefaultToolkit().createImage(bytes));
} catch (java.lang.NullPointerException e) {
System.out.println("Could not find EvA2 icon, please move resource folder to working directory!");
System.out.println("Could not find EvA2 icon, please move resources folder to working directory!");
}
frame.addWindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent e) {

View File

@ -99,7 +99,7 @@ public class LogPanel extends JPanel {
try {
frame.setIconImage(Toolkit.getDefaultToolkit().createImage(bytes));
} catch (java.lang.NullPointerException e) {
System.out.println("Could not find EvA2 icon, please move rescoure folder to working directory!");
System.out.println("Could not find EvA2 icon, please move resources folder to working directory!");
}
LogPanel panel = new LogPanel();
frame.getContentPane().add(panel, BorderLayout.CENTER);

View File

@ -110,7 +110,7 @@ public class Plot implements PlotInterface, Serializable {
try {
m_Frame.setIconImage(Toolkit.getDefaultToolkit().createImage(bytes));
} catch (java.lang.NullPointerException e) {
System.out.println("Could not find EvA2 icon, please move rescoure folder to working directory!");
System.out.println("Could not find EvA2 icon, please move resources folder to working directory!");
}
m_ButtonPanel = new JPanel();

View File

@ -43,7 +43,7 @@ public class PropertyDialog extends JEFrame {
try {
setIconImage(Toolkit.getDefaultToolkit().createImage(bytes));
} catch (java.lang.NullPointerException e) {
System.out.println("Could not find EvA2 icon, please move rescoure folder to working directory!");
System.out.println("Could not find EvA2 icon, please move resources folder to working directory!");
}
//System.out.println("PropertyDialog.Constructor of "+ Title);
addWindowListener(new WindowAdapter() {

View File

@ -127,7 +127,7 @@ public class TagEditor extends PropertyEditorSupport {
try {
f.setIconImage(Toolkit.getDefaultToolkit().createImage(bytes));
} catch (java.lang.NullPointerException e) {
System.out.println("Could not find EvA2 icon, please move rescoure folder to working directory!");
System.out.println("Could not find EvA2 icon, please move resources folder to working directory!");
}
f.addWindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent e) {

View File

@ -154,7 +154,7 @@ public class ESIndividualBinaryData extends AbstractEAIndividual implements Inte
* memetic algorithms.
* @param binaryData The new binary data.
*/
public void SetBinaryDataLamarkian(BitSet binaryData) {
public void SetBinaryDataLamarckian(BitSet binaryData) {
this.SetBinaryData(binaryData);
for (int i = 0; i < this.m_Genotype.length; i++) {
if (this.m_UseHardSwitch) {
@ -187,7 +187,7 @@ public class ESIndividualBinaryData extends AbstractEAIndividual implements Inte
public void initByValue(Object obj, InterfaceOptimizationProblem opt) {
if (obj instanceof BitSet) {
BitSet bs = (BitSet) obj;
this.SetBinaryDataLamarkian(bs);
this.SetBinaryDataLamarckian(bs);
} else {
this.defaultInit();
System.out.println("Initial value for ESIndividualBinaryData is no BitSet!");
@ -285,7 +285,7 @@ public class ESIndividualBinaryData extends AbstractEAIndividual implements Inte
* @return description
*/
public String globalInfo() {
return "This is a ES individual adopted to optimize binary values.";
return "This is an ES individual adopted to optimize binary values.";
}
/** This method will toggle between genotyp interpreation as bit probability and

View File

@ -174,7 +174,7 @@ public class ESIndividualDoubleData extends AbstractEAIndividual implements Inte
}
/** This method allows you to set the phenotype double data. To change the genotype,
* use SetDoubleDataLamarkian().
* use SetDoubleDataLamarckian().
* @param doubleData The new double data.
*/
public void SetDoubleData(double[] doubleData) {
@ -185,7 +185,7 @@ public class ESIndividualDoubleData extends AbstractEAIndividual implements Inte
* memetic algorithms.
* @param doubleData The new double data.
*/
public void SetDoubleDataLamarkian(double[] doubleData) {
public void SetDoubleDataLamarckian(double[] doubleData) {
this.SetDoubleData(doubleData);
this.m_Genotype = new double[doubleData.length];
System.arraycopy(doubleData, 0, this.m_Genotype, 0, doubleData.length);
@ -212,7 +212,7 @@ public class ESIndividualDoubleData extends AbstractEAIndividual implements Inte
if (obj instanceof double[]) {
double[] bs = (double[]) obj;
if (bs.length != this.m_Genotype.length) System.out.println("Init value and requested length doesn't match!");
this.SetDoubleDataLamarkian(bs);
this.SetDoubleDataLamarckian(bs);
} else {
this.defaultInit();
System.out.println("Initial value for ESIndividualDoubleData is not double[]!");
@ -307,7 +307,7 @@ public class ESIndividualDoubleData extends AbstractEAIndividual implements Inte
* @return description
*/
public String globalInfo() {
return "This is a ES individual suited to optimize double values.";
return "This is an ES individual suited to optimize double values.";
}
// public String toString() {

View File

@ -177,7 +177,7 @@ public class ESIndividualIntegerData extends AbstractEAIndividual implements Int
* memetic algorithms.
* @param intData The new int data.
*/
public void SetIntegerDataLamarkian(int[] intData) {
public void SetIntegerDataLamarckian(int[] intData) {
this.SetIntegerData(intData);
}
@ -202,7 +202,7 @@ public class ESIndividualIntegerData extends AbstractEAIndividual implements Int
if (obj instanceof int[]) {
int[] bs = (int[]) obj;
if (bs.length != this.m_Genotype.length) System.out.println("Init value and requested length doesn't match!");
this.SetIntegerDataLamarkian(bs);
this.SetIntegerDataLamarckian(bs);
} else {
this.defaultInit();
System.out.println("Initial value for ESIndividualIntegerData is not int[]!");
@ -295,6 +295,6 @@ public class ESIndividualIntegerData extends AbstractEAIndividual implements Int
* @return description
*/
public String globalInfo() {
return "This is a ES individual suited to optimize ini values.";
return "This is an ES individual suited to optimize integer values.";
}
}

View File

@ -146,7 +146,7 @@ public class ESIndividualPermutationData extends AbstractEAIndividual implements
}
public void SetPermutationDataLamarkian(int[][] perm){
public void SetPermutationDataLamarckian(int[][] perm){
this.SetPermutationData(perm);
this.m_Genotype = new double[perm.length][];
@ -231,7 +231,7 @@ public class ESIndividualPermutationData extends AbstractEAIndividual implements
if (obj instanceof int[][]) {
int[][] bs = (int[][]) obj;
if (bs.length != this.m_Genotype.length) System.out.println("Init value and requested length doesn't match!");
this.SetPermutationDataLamarkian(bs);
this.SetPermutationDataLamarckian(bs);
} else {
this.defaultInit();
System.out.println("Initial value for ESIndividualPermutationData is not int[]!");
@ -373,7 +373,7 @@ public class ESIndividualPermutationData extends AbstractEAIndividual implements
* @return description
*/
public String globalInfo() {
return "This is a ES individual suited to optimize permutation values.";
return "This is an ES individual suited to optimize permutations.";
}
}

View File

@ -229,10 +229,10 @@ public class GAESIndividualBinaryDoubleData extends AbstractEAIndividual impleme
/** This method allows you to set the double data, this can be used for
* memetic algorithms.
* @param doubleData The new double data.
* @see InterfaceDataTypeDouble.SetDoubleDataLamarkian()
* @see InterfaceDataTypeDouble.SetDoubleDataLamarckian()
*/
public void SetDoubleDataLamarkian(double[] doubleData) {
this.m_Numbers.SetDoubleDataLamarkian(doubleData);
public void SetDoubleDataLamarckian(double[] doubleData) {
this.m_Numbers.SetDoubleDataLamarckian(doubleData);
}
/**********************************************************************************************************************
@ -279,10 +279,10 @@ public class GAESIndividualBinaryDoubleData extends AbstractEAIndividual impleme
/** This method allows you to set the binary data, this can be used for
* memetic algorithms.
* @param binaryData The new binary data.
* @see InterfaceBinaryData.SetBinaryDataLamarkian()
* @see InterfaceBinaryData.SetBinaryDataLamarckian()
*/
public void SetBinaryDataLamarkian(BitSet binaryData) {
this.m_BitSet.SetBinaryDataLamarkian(binaryData);
public void SetBinaryDataLamarckian(BitSet binaryData) {
this.m_BitSet.SetBinaryDataLamarckian(binaryData);
}
/**********************************************************************************************************************

View File

@ -112,7 +112,7 @@ public class GAIndividualBinaryData extends AbstractEAIndividual implements Inte
public void initByValue(Object obj, InterfaceOptimizationProblem opt) {
if (obj instanceof BitSet) {
BitSet bs = (BitSet) obj;
this.SetBinaryDataLamarkian(bs);
this.SetBinaryDataLamarckian(bs);
} else {
this.defaultInit();
System.out.println("Initial value for GAIndividualBinaryData is no BitSet!");
@ -242,7 +242,7 @@ public class GAIndividualBinaryData extends AbstractEAIndividual implements Inte
* memetic algorithms.
* @param binaryData The new binary data.
*/
public void SetBinaryDataLamarkian(BitSet binaryData) {
public void SetBinaryDataLamarckian(BitSet binaryData) {
this.SetBinaryData(binaryData);
this.m_Genotype =(BitSet)binaryData.clone();
}

View File

@ -186,7 +186,7 @@ public class GAIndividualDoubleData extends AbstractEAIndividual implements Inte
}
/** This method allows you to set the phenotype data. To change the genotype data,
* use SetDoubleDataLamarkian.
* use SetDoubleDataLamarckian.
* @param doubleData The new double data.
*/
public void SetDoubleData(double[] doubleData) {
@ -197,7 +197,7 @@ public class GAIndividualDoubleData extends AbstractEAIndividual implements Inte
* memetic algorithms.
* @param doubleData The new double data.
*/
public void SetDoubleDataLamarkian(double[] doubleData) {
public void SetDoubleDataLamarckian(double[] doubleData) {
this.SetDoubleData(doubleData);
int[] locus = new int[2];
for (int i = 0; i < doubleData.length; i++) {
@ -228,7 +228,7 @@ public class GAIndividualDoubleData extends AbstractEAIndividual implements Inte
if (obj instanceof double[]) {
double[] bs = (double[]) obj;
if (bs.length != this.m_Range.length) System.out.println("Init value and requested length doesn't match!");
this.SetDoubleDataLamarkian(bs);
this.SetDoubleDataLamarckian(bs);
} else {
this.defaultInit();
System.out.println("Initial value for GAIndividualDoubleData is not double[]!");

View File

@ -194,7 +194,7 @@ public class GAIndividualIntegerData extends AbstractEAIndividual implements Int
* memetic algorithms.
* @param doubleData The new double data.
*/
public void SetIntegerDataLamarkian(int[] doubleData) {
public void SetIntegerDataLamarckian(int[] doubleData) {
this.SetIntegerData(doubleData);
if (doubleData != null) {
int[] locus = new int[2];
@ -229,7 +229,7 @@ public class GAIndividualIntegerData extends AbstractEAIndividual implements Int
if (obj instanceof int[]) {
int[] bs = (int[]) obj;
if (bs.length != this.m_Range.length) System.out.println("Init value and requested length doesn't match!");
this.SetIntegerDataLamarkian(bs);
this.SetIntegerDataLamarckian(bs);
} else {
this.defaultInit();
System.out.println("Initial value for GAIndividualDoubleData is not double[]!");
@ -354,7 +354,7 @@ public class GAIndividualIntegerData extends AbstractEAIndividual implements Int
tmp += data[i] + "; ";
}
System.out.println(tmp+"}");
indy.SetIntegerDataLamarkian(data);
indy.SetIntegerDataLamarckian(data);
System.out.println(""+indy.getStringRepresentation());
data = indy.getIntegerData();
tmp = "After {";

View File

@ -211,7 +211,7 @@ public class GAPIndividualProgramData extends AbstractEAIndividual implements In
}
/** This method allows you to set the phenotype data. To change the genotype, use
* SetDoubleDataLamarkian().
* SetDoubleDataLamarckian().
* @param doubleData The new double data.
*/
public void SetDoubleData(double[] doubleData) {
@ -222,8 +222,8 @@ public class GAPIndividualProgramData extends AbstractEAIndividual implements In
* memetic algorithms.
* @param doubleData The new double data.
*/
public void SetDoubleDataLamarkian(double[] doubleData) {
this.m_Numbers.SetDoubleDataLamarkian(doubleData);
public void SetDoubleDataLamarckian(double[] doubleData) {
this.m_Numbers.SetDoubleDataLamarckian(doubleData);
}
/************************************************************************************
@ -261,8 +261,8 @@ public class GAPIndividualProgramData extends AbstractEAIndividual implements In
/** This method allows you to set the program.
* @param program The new program.
*/
public void SetProgramDataLamarkian(InterfaceProgram[] program) {
this.m_Program.SetProgramDataLamarkian(program);
public void SetProgramDataLamarckian(InterfaceProgram[] program) {
this.m_Program.SetProgramDataLamarckian(program);
}
/** This method allows you to set the function area

View File

@ -473,7 +473,7 @@ public class GEIndividualProgramData extends AbstractEAIndividual implements Int
* Warning - this is not implemented, it only sets the phenotype using SetProgramData.
* @param program The new program.
*/
public void SetProgramDataLamarkian(InterfaceProgram[] program) {
public void SetProgramDataLamarckian(InterfaceProgram[] program) {
this.SetProgramData(program);
if (program instanceof AbstractGPNode[]) System.err.println("Warning setProgram() for GEIndividualProgramData not implemented!");
}
@ -517,7 +517,7 @@ public class GEIndividualProgramData extends AbstractEAIndividual implements Int
*/
public void initByValue(Object obj, InterfaceOptimizationProblem opt) {
if (obj instanceof InterfaceProgram) {
this.SetProgramDataLamarkian((InterfaceProgram[])obj);
this.SetProgramDataLamarckian((InterfaceProgram[])obj);
} else {
this.defaultInit();
System.out.println("Initial value for GPIndividualDoubleData is no InterfaceProgram[]!");

View File

@ -178,7 +178,7 @@ public class GIIndividualIntegerData extends AbstractEAIndividual implements Int
* memetic algorithms.
* @param doubleData The new double data.
*/
public void SetIntegerDataLamarkian(int[] doubleData) {
public void SetIntegerDataLamarckian(int[] doubleData) {
this.SetIntegerData(doubleData);
this.m_Genotype = new int[this.m_Range.length];
for (int i = 0; i < doubleData.length; i++) {
@ -207,7 +207,7 @@ public class GIIndividualIntegerData extends AbstractEAIndividual implements Int
if (obj instanceof int[]) {
int[] bs = (int[]) obj;
if (bs.length != this.m_Range.length) System.out.println("Init value and requested length doesn't match!");
this.SetIntegerDataLamarkian(bs);
this.SetIntegerDataLamarckian(bs);
} else {
this.defaultInit();
System.out.println("Initial value for GAIndividualDoubleData is not double[]!");

View File

@ -228,8 +228,8 @@ public class GIOBGAIndividualIntegerPermutationData extends AbstractEAIndividual
* memetic algorithms.
* @param intData The new int data.
*/
public void SetIntegerDataLamarkian(int[] intData) {
this.m_Integer.SetIntegerDataLamarkian(intData);
public void SetIntegerDataLamarckian(int[] intData) {
this.m_Integer.SetIntegerDataLamarckian(intData);
}
/**********************************************************************************************************************
@ -276,8 +276,8 @@ public class GIOBGAIndividualIntegerPermutationData extends AbstractEAIndividual
* memetic algorithms.
* @param perm The new permutation data.
*/
public void SetPermutationDataLamarkian(int[][] perm) {
this.SetPermutationDataLamarkian(perm);
public void SetPermutationDataLamarckian(int[][] perm) {
this.SetPermutationDataLamarckian(perm);
}
public void setFirstindex(int[] firstindex) {

View File

@ -166,7 +166,7 @@ public class GPIndividualProgramData extends AbstractEAIndividual implements Int
/** This method allows you to set the program genotype.
* @param program The new program.
*/
public void SetProgramDataLamarkian(InterfaceProgram[] program) {
public void SetProgramDataLamarckian(InterfaceProgram[] program) {
this.SetProgramData(program);
if (program instanceof AbstractGPNode[]) {
this.m_Genotype = new AbstractGPNode[program.length];
@ -210,7 +210,7 @@ public class GPIndividualProgramData extends AbstractEAIndividual implements Int
*/
public void initByValue(Object obj, InterfaceOptimizationProblem opt) {
if (obj instanceof InterfaceProgram[]) {
this.SetProgramDataLamarkian((InterfaceProgram[])obj);
this.SetProgramDataLamarckian((InterfaceProgram[])obj);
} else {
this.defaultInit();
System.out.println("Initial value for GPIndividualDoubleData is no InterfaceProgram[]!");

View File

@ -43,5 +43,5 @@ public interface InterfaceDataTypeBinary {
* memetic algorithms.
* @param binaryData The new binary data.
*/
public void SetBinaryDataLamarkian(BitSet binaryData);
public void SetBinaryDataLamarckian(BitSet binaryData);
}

View File

@ -45,7 +45,7 @@ public interface InterfaceDataTypeDouble {
public double[] getDoubleDataWithoutUpdate();
/** This method allows you to set the double data, usually the phenotype data. Consider using
* SetDoubleDataLamarkian to set the genotype data.
* SetDoubleDataLamarckian to set the genotype data.
* @param doubleData The new double data.
*/
public void SetDoubleData(double[] doubleData);
@ -54,5 +54,5 @@ public interface InterfaceDataTypeDouble {
* memetic algorithms.
* @param doubleData The new double data.
*/
public void SetDoubleDataLamarkian(double[] doubleData);
public void SetDoubleDataLamarckian(double[] doubleData);
}

View File

@ -53,5 +53,5 @@ public interface InterfaceDataTypeInteger {
* memetic algorithms.
* @param intData The new int data.
*/
public void SetIntegerDataLamarkian(int[] intData);
public void SetIntegerDataLamarckian(int[] intData);
}

View File

@ -54,7 +54,7 @@ public interface InterfaceDataTypePermutation {
* memetic algorithms.
* @param perm The new permutation data.
*/
void SetPermutationDataLamarkian(int[][] perm);
void SetPermutationDataLamarckian(int[][] perm);
public void setFirstindex(int[] firstindex);
}

View File

@ -37,7 +37,7 @@ public interface InterfaceDataTypeProgram {
/** This method allows you to set the program.
* @param program The new program.
*/
public void SetProgramDataLamarkian(InterfaceProgram[] program);
public void SetProgramDataLamarckian(InterfaceProgram[] program);
/** This method allows you to set the function area
* @param area The area contains functions and terminals

View File

@ -104,7 +104,7 @@ public class OBGAIndividualPermutationData extends AbstractEAIndividual implemen
*/
public void initByValue(Object obj, InterfaceOptimizationProblem opt) {
if (obj instanceof int[]) {
this.SetPermutationDataLamarkian((int[][]) obj);
this.SetPermutationDataLamarckian((int[][]) obj);
} else {
this.defaultInit();
System.out.println("Initial value for OBGAIndividualBinaryData is no Permutation!");
@ -177,7 +177,7 @@ public class OBGAIndividualPermutationData extends AbstractEAIndividual implemen
perm[p2] = temp;
}
this.SetPermutationDataLamarkian(permmatrix);
this.SetPermutationDataLamarckian(permmatrix);
}
/*generates a random permutation */
@ -196,7 +196,7 @@ public class OBGAIndividualPermutationData extends AbstractEAIndividual implemen
i++;
}
}
this.SetPermutationDataLamarkian(perm);
this.SetPermutationDataLamarckian(perm);
// System.out.println(getStringRepresentation());
}
@ -227,7 +227,7 @@ public class OBGAIndividualPermutationData extends AbstractEAIndividual implemen
this.m_Phenotype = perm;
}
public void SetPermutationDataLamarkian(int[][] perm){
public void SetPermutationDataLamarckian(int[][] perm){
this.SetPermutationData(perm);
this.m_Genotype = new int[perm.length][];
for (int i = 0; i < perm.length; i++) {

View File

@ -60,7 +60,7 @@ public class MOCCOChooseMOStrategy extends MOCCOPhase implements InterfaceProces
tmpB.setIcon(new ImageIcon(Toolkit.getDefaultToolkit().createImage(bytes)));
tmpB.setBackground(Color.WHITE);
} catch (java.lang.NullPointerException e) {
System.out.println("Could not find MOCCO_MOEA icon, please move rescoure folder to working directory!");
System.out.println("Could not find MOCCO_MOEA icon, please move resources folder to working directory!");
tmpB.setText("Multi-Objective EA");
}
gbc.gridy = 0;
@ -83,7 +83,7 @@ public class MOCCOChooseMOStrategy extends MOCCOPhase implements InterfaceProces
tmpB.setIcon(new ImageIcon(Toolkit.getDefaultToolkit().createImage(bytes)));
tmpB.setBackground(Color.WHITE);
} catch (java.lang.NullPointerException e) {
System.out.println("Could not find MOCCO_GDF icon, please move rescoure folder to working directory!");
System.out.println("Could not find MOCCO_GDF icon, please move resources folder to working directory!");
tmpB.setText("Geoffrion-Dyer-Feinberg Meth.");
}
gbc.gridy = 1;
@ -104,7 +104,7 @@ public class MOCCOChooseMOStrategy extends MOCCOPhase implements InterfaceProces
tmpB.setIcon(new ImageIcon(Toolkit.getDefaultToolkit().createImage(bytes)));
tmpB.setBackground(Color.WHITE);
} catch (java.lang.NullPointerException e) {
System.out.println("Could not find MOCCO_STEP icon, please move rescoure folder to working directory!");
System.out.println("Could not find MOCCO_STEP icon, please move resources folder to working directory!");
tmpB.setText("STEP Method");
}
gbc.gridy = 2;
@ -126,7 +126,7 @@ public class MOCCOChooseMOStrategy extends MOCCOPhase implements InterfaceProces
tmpB.setIcon(new ImageIcon(Toolkit.getDefaultToolkit().createImage(bytes)));
tmpB.setBackground(Color.WHITE);
} catch (java.lang.NullPointerException e) {
System.out.println("Could not find MOCCO_REFP icon, please move rescoure folder to working directory!");
System.out.println("Could not find MOCCO_REFP icon, please move resources folder to working directory!");
tmpB.setText("Reference Point Method");
}
gbc.gridy = 3;
@ -148,7 +148,7 @@ public class MOCCOChooseMOStrategy extends MOCCOPhase implements InterfaceProces
tmpB.setIcon(new ImageIcon(Toolkit.getDefaultToolkit().createImage(bytes)));
tmpB.setBackground(Color.WHITE);
} catch (java.lang.NullPointerException e) {
System.out.println("Could not find MOCCO_TBCH icon, please move rescoure folder to working directory!");
System.out.println("Could not find MOCCO_TBCH icon, please move resources folder to working directory!");
tmpB.setText("Tchebycheff Method");
}
gbc.gridy = 4;

View File

@ -12,8 +12,8 @@ import eva2.server.go.populations.Population;
import wsi.ra.chart2d.DPointIcon;
/** Another simple archiving strategy not based on dominace but on the MaxiMin
* criteria. Doesn't work well on non-convex Pareto fronts.
/** Another simple archiving strategy not based on dominance but on the MaxiMin
* criterion. Doesn't work well on non-convex Pareto fronts.
* Created by IntelliJ IDEA.
* User: streiche
* Date: 09.08.2004
@ -96,7 +96,7 @@ public class ArchivingMaxiMin implements InterfaceArchiving, java.io.Serializabl
}
/** Since SelectMOMaxiMin relies on a MOSO conversion
* a single criteria selection method must be used.
* a single criterion selection method must be used.
* @param pop The selection method used.
*/
public void setSelectionMethod(InterfaceSelection pop) {
@ -196,7 +196,7 @@ public class ArchivingMaxiMin implements InterfaceArchiving, java.io.Serializabl
// }
//
// /** Since SelectMOMaxiMin relies on a MOSO conversion
// * a single criteria selection method can be used.
// * a single criterion selection method can be used.
// * @param pop The selection method used.
// */
// public void setSelectionMethod(InterfaceSelection pop) {

View File

@ -188,7 +188,7 @@ public class ClusteringDensityBased implements InterfaceClustering, java.io.Seri
* @return description
*/
public String globalInfo() {
return "A density-based Clustering Algorithm (DBSCAN).";
return "A density-based clustering algorithm (DBSCAN).";
}
/** This method will return a naming String
* @return The name of the algorithm

View File

@ -317,7 +317,7 @@ public class ClusteringXMeans implements InterfaceClustering, java.io.Serializab
x[0] = 10;
x[1] = 10;
}
((InterfaceDataTypeDouble)pop.get(i)).SetDoubleDataLamarkian(x);
((InterfaceDataTypeDouble)pop.get(i)).SetDoubleDataLamarckian(x);
}
} else {
f1.initPopulation(pop);

View File

@ -129,7 +129,7 @@ public class CrossoverGANPoint implements InterfaceCrossover, java.io.Serializab
* @return description
*/
public String globalInfo() {
return "This is a n-point crossover between m individuals.";
return "This is an n-point crossover between m individuals.";
}
/** This method allows you to set the number of crossovers that occur in the

View File

@ -126,7 +126,7 @@ public class CrossoverGINPoint implements InterfaceCrossover, java.io.Serializab
* @return description
*/
public String globalInfo() {
return "This is a n-point crossover between m individuals.";
return "This is an n-point crossover between m individuals.";
}
/** This method allows you to set the number of crossovers that occur in the

View File

@ -66,8 +66,8 @@ public class CrossoverOBGAPMX implements InterfaceCrossover, java.io.Serializabl
((InterfaceOBGAIndividual) result[0]).SetOBGenotype(pperm1);
((InterfaceOBGAIndividual) result[1]).SetOBGenotype(pperm2);
//((InterfaceDataTypePermutation) result[0]).SetPermutationDataLamarkian(pperm1);
//((InterfaceDataTypePermutation) result[1]).SetPermutationDataLamarkian(pperm2);
//((InterfaceDataTypePermutation) result[0]).SetPermutationDataLamarckian(pperm1);
//((InterfaceDataTypePermutation) result[1]).SetPermutationDataLamarckian(pperm2);
}
//in case the crossover was successfull lets give the mutation operators a chance to mate the strategy parameters
for (int i = 0; i < result.length; i++) result[i].getMutationOperator().crossoverOnStrategyParameters(indy1, partners);

View File

@ -181,7 +181,7 @@ public class PropertyCrossoverMixerEditor extends JPanel implements PropertyEdit
try {
this.m_Delete[i] = new JButton("", new ImageIcon(Toolkit.getDefaultToolkit().createImage(bytes)));
} catch (java.lang.NullPointerException e) {
System.out.println("Could not find sub24 icon, please move rescoure folder to working directory!");
System.out.println("Could not find sub24 icon, please move resources folder to working directory!");
this.m_Delete[i] = new JButton("Sub");
}
this.m_Delete[i].addActionListener(deleteTarget);

View File

@ -6,8 +6,8 @@ import eva2.server.go.strategies.InterfaceOptimizer;
* (currently all migration methods are typically fully
* connected) and give the selection criteria. While
* SOXMigration stands for uni-criterial migration
* MOXMigration typically stands for multi-criteria migration.
* For multi-criteria optimization the migration scheme
* MOXMigration typically stands for multi-criterial migration.
* For multi-criterial optimization the migration scheme
* also may give the subdividing scheme.
* Created by IntelliJ IDEA.
* User: streiche

View File

@ -6,7 +6,7 @@ import eva2.server.go.operators.selection.SelectMOMaxiMin;
import eva2.server.go.populations.Population;
import eva2.server.go.strategies.InterfaceOptimizer;
/** Migration based on a Multi-criteria selection mechanism
/** Migration based on a Multi-criterial selection mechanism
* migrating the n best individuals between all populations.
* Created by IntelliJ IDEA.
* User: streiche
@ -36,7 +36,7 @@ public class MOBestMigration implements InterfaceMigration, java.io.Serializable
* sychronously. Basically it allows migration of individuals
* between multiple EA islands and since there are so many
* different possible strategies i've introduced this
* interface which is mostlikely subject to numerous changes..
* interface which is most likely subject to numerous changes..
* Note: Since i use the RMIRemoteThreadProxy everything done
* to the islands will use the serialization method, so if
* you call getPopulation() on an island it is not a reference

View File

@ -32,7 +32,7 @@ public interface InterfaceMOSOConverter {
/** This method allows the problem to set the current output size of
* the optimization problem. Additional weights will be set to a default
* value of one
* @param dim Outputdimension
* @param dim output dimension
*/
public void setOutputDimension(int dim);

View File

@ -108,7 +108,7 @@ public class MOSOMaxiMin implements InterfaceMOSOConverter, java.io.Serializable
tmpFit = indy.getFitness();
indy.SetData("MOFitness", tmpFit);
System.out.println("The MaxiMin MOSO can not be applied to single individuals! I default to random criteria.");
System.out.println("The MaxiMin MOSO can not be applied to single individuals! I default to random criterion.");
resultFit[0] = tmpFit[RNG.randomInt(0, tmpFit.length)];
indy.SetFitness(resultFit);
}

View File

@ -179,7 +179,7 @@ public class PropertyMutationMixerEditor extends JPanel implements PropertyEdito
try {
this.m_Delete[i] = new JButton("", new ImageIcon(Toolkit.getDefaultToolkit().createImage(bytes)));
} catch (java.lang.NullPointerException e) {
System.out.println("Could not find sub24 icon, please move rescoure folder to working directory!");
System.out.println("Could not find sub24 icon, please move resources folder to working directory!");
this.m_Delete[i] = new JButton("Sub");
}
this.m_Delete[i].addActionListener(deleteTarget);

View File

@ -161,7 +161,7 @@ public class SelectBestIndividuals implements InterfaceSelection, java.io.Serial
*/
public String globalInfo() {
return "This selection method will select the n-Best individuals." +
"This is a single objective selecting method, it will select in respect to a random criteria.";
"This is a single objective selecting method, it will select in respect to a random criterion.";
}
/** This method will return a naming String

View File

@ -169,7 +169,7 @@ public class SelectEPTournaments implements InterfaceSelection, java.io.Serializ
public String globalInfo() {
return "The EP tournament selection performs a number of tournaments per individual, the winner is assigned a point." +
" The individuals with the most points are selected." +
" This is a single objective selecting method, it will select in respect to a random criteria.";
" This is a single objective selecting method, it will select in respect to a random criterion.";
}
/** You can choose the tournament size.

View File

@ -80,7 +80,7 @@ public class SelectHomologousMate extends SelectTournament implements java.io.Se
*/
public String globalInfo() {
return "This selection will select n mates from all individuals within the mating distance (extends Tournament Selection)." +
"This is a single objective selecting method, it will select in respect to a random criteria.";
"This is a single objective selecting method, it will select in respect to a random criterion.";
}
/** This method allows you to set/get the mating radius.

View File

@ -124,7 +124,7 @@ public class SelectMOMAIIDominanceCounter implements InterfaceSelection, java.io
}
/** Since SelectMOMaxiMin relies on a MOSO conversion
* a single criteria selection method can be used.
* a single criterion selection method can be used.
* @param pop The selection method used.
*/
public void setSelectionMethod(InterfaceSelection pop) {

View File

@ -94,7 +94,7 @@ public class SelectMOMaxiMin implements InterfaceSelection, java.io.Serializable
}
/** Since SelectMOMaxiMin relies on a MOSO conversion
* a single criteria selection method can be used.
* a single criterion selection method can be used.
* @param pop The selection method used.
*/
public void setSelectionMethod(InterfaceSelection pop) {

View File

@ -10,8 +10,8 @@ import eva2.server.go.operators.archiving.ArchivingPESAII;
import eva2.server.go.populations.Population;
import wsi.ra.math.RNG;
/** The multi-objective PESA II selection criteria based on a n-dimensional
* grid using a squezzing factor.
/** The multi-objective PESA II selection criteria based on an n-dimensional
* grid using a squeezing factor.
* Created by IntelliJ IDEA.
* User: streiche
* Date: 11.08.2004

View File

@ -122,7 +122,7 @@ public class SelectParticleWheel implements InterfaceSelection, java.io.Serializ
*/
public String globalInfo() {
return "This method chooses individuals similar to the static roulette wheel. The chance for each individual to be selected depends on the selection probability. The selection probability is 1 for all Individuals with a fitness that is bigger than the midean fitness." +
"This is a single objective selecting method, it will select in respect to a random criteria.";
"This is a single objective selecting method, it will select in respect to a random criterion.";
}
/** Toggel the use of obeying the constraint violation principle

View File

@ -203,7 +203,7 @@ public class SelectXProbRouletteWheel implements InterfaceSelection, java.io.Ser
*/
public String globalInfo() {
return "This method chooses individuals similar to the roulette wheel. The chance for each individual to be selected depends on the selection probability." +
"This is a single objective selecting method, it will select in respect to a random criteria.";
"This is a single objective selecting method, it select with respect to a random criterion.";
}
/** This method will set the normation method that is to be used.

View File

@ -98,7 +98,7 @@ public abstract class AbstractDynTransProblem extends AbstractSynchronousOptimiz
/* individuum moves towords untranslated problem */
indyData[i] -= getTranslation(i, time);
}
((InterfaceDataTypeDouble)individual).SetDoubleDataLamarkian(indyData);
((InterfaceDataTypeDouble)individual).SetDoubleDataLamarckian(indyData);
}
/*

View File

@ -175,7 +175,7 @@ public abstract class AbstractMultiModalProblemKnown extends AbstractProblemDoub
protected void addOptimum(double[] point) {
InterfaceDataTypeDouble tmpIndy;
tmpIndy = (InterfaceDataTypeDouble)((AbstractEAIndividual)this.m_Template).clone();
tmpIndy.SetDoubleDataLamarkian(point);
tmpIndy.SetDoubleDataLamarckian(point);
((AbstractEAIndividual)tmpIndy).SetFitness(evalUnnormalized(point));
if (((AbstractEAIndividual)tmpIndy).getFitness(0)>=m_GlobalOpt) {
m_GlobalOpt = ((AbstractEAIndividual)tmpIndy).getFitness(0);

View File

@ -22,7 +22,7 @@ public class BKnapsackProblem extends AbstractProblemBinary implements java.io.S
private int m_Limit = 5000;
private double m_Punish = 2.0;
private double m_LocalSearch = 0.0;
private boolean m_Lamarkism = false;
private boolean m_Lamarckism = false;
private double m_ProblemSpecificInit = 0.0;
static final int[][] items = {
{334,-328},
@ -137,7 +137,7 @@ public class BKnapsackProblem extends AbstractProblemBinary implements java.io.S
this.m_Limit = b.m_Limit;
this.m_Punish = b.m_Punish;
this.m_LocalSearch = b.m_LocalSearch;
this.m_Lamarkism = b.m_Lamarkism;
this.m_Lamarckism = b.m_Lamarckism;
}
public int getProblemDimension() {
@ -166,7 +166,7 @@ public class BKnapsackProblem extends AbstractProblemBinary implements java.io.S
while (eval(tmpSet)[1] > 0) {
tmpSet.set(RNG.randomInt(0,items.length-1));
}
((InterfaceDataTypeBinary)indy).SetBinaryDataLamarkian(tmpSet);
((InterfaceDataTypeBinary)indy).SetBinaryDataLamarckian(tmpSet);
}
}
@ -233,8 +233,8 @@ public class BKnapsackProblem extends AbstractProblemBinary implements java.io.S
result = this.eval(tmpBitSet);
}
if (this.m_Lamarkism) {
((InterfaceDataTypeBinary) individual).SetBinaryDataLamarkian(tmpBitSet);
if (this.m_Lamarckism) {
((InterfaceDataTypeBinary) individual).SetBinaryDataLamarckian(tmpBitSet);
}
}
result[0] += 5100;
@ -334,7 +334,7 @@ public class BKnapsackProblem extends AbstractProblemBinary implements java.io.S
* @return description
*/
public String globalInfo() {
return "Maximize the value of the Knapsack without exceeding the weight limit of the knapsack.";
return "Maximize the value of the knapsack without exceeding the weight limit.";
}
/** This method allows you to set the number of mulitruns that are to be performed,
@ -390,16 +390,16 @@ public class BKnapsackProblem extends AbstractProblemBinary implements java.io.S
public String localSearchTipText() {
return "Gives the chance of local search.";
}
/** This method allows you to toggle the use of Lamarkism.
* @param b toggles lamarkism.
/** This method allows you to toggle the use of Lamarckism.
* @param b toggles lamarckism.
*/
public void setLamarkism(boolean b) {
this.m_Lamarkism = b;
public void setLamarckism(boolean b) {
this.m_Lamarckism = b;
}
public boolean getLamarkism() {
return this.m_Lamarkism;
public boolean getLamarckism() {
return this.m_Lamarckism;
}
public String lamarkismTipText() {
return "Lamarkism alters the genotype after the local search.";
public String lamarckismTipText() {
return "Lamarckism alters the genotype after the local search.";
}
}

View File

@ -153,7 +153,7 @@ public class DynamicParticleSwarmOptimization extends ParticleSwarmOptimization
}
}
if (indy instanceof InterfaceDataTypeDouble) ((InterfaceDataTypeDouble)indy).SetDoubleDataLamarkian(newPos);
if (indy instanceof InterfaceDataTypeDouble) ((InterfaceDataTypeDouble)indy).SetDoubleDataLamarckian(newPos);
else endy.SetDGenotype(newPos);
resetFitness(indy);

View File

@ -13,7 +13,7 @@ import eva2.server.go.problems.InterfaceOptimizationProblem;
/** Evolution strategies by Rechenberg and Schwefel, but please remember that
* this only gives the generation strategy and not the coding. But this is the
* only stategies that is able to utilize the 1/5 success rule mutation. Unfortunately,
* only stategy that is able to utilize the 1/5 success rule mutation. Unfortunately,
* there is a minor problem with the interpretation of the population size in constrast
* to the parameters mu and lambda used by Rechenberg and Schwefel. Therefore, i'm
* afraid that the interpretation of the population size may be subject to future
@ -347,7 +347,7 @@ public class EvolutionStrategies implements InterfaceOptimizer, java.io.Serializ
* @return description
*/
public String globalInfo() {
return "This is an Evolution Strategy. Note that the population size gives lambda.";
return "This is an Evolution Strategy. Note that the population size depends on mu (number of parents) and lambda (number of offspring).";
}
/** This method will return a naming String
* @return The name of the algorithm

View File

@ -181,7 +181,7 @@ public class GradientDescentAlgorithm implements InterfaceOptimizer, java.io.Ser
}
((InterfaceDataTypeDouble) indy).SetDoubleDataLamarkian(params);
((InterfaceDataTypeDouble) indy).SetDoubleDataLamarckian(params);
}
}

View File

@ -1130,7 +1130,7 @@ public class ParticleSwarmOptimization implements InterfaceOptimizer, java.io.Se
}
// finally set the new position and the current velocity
if (indy instanceof InterfaceDataTypeDouble) ((InterfaceDataTypeDouble)indy).SetDoubleDataLamarkian(newPosition);
if (indy instanceof InterfaceDataTypeDouble) ((InterfaceDataTypeDouble)indy).SetDoubleDataLamarckian(newPosition);
else {
((InterfaceESIndividual) indy).SetDGenotype(newPosition); // WARNING, this does a checkBounds in any case!
if (!m_CheckConstraints) System.err.println("warning, checkbounds will be forced by InterfaceESIndividual!");

View File

@ -248,7 +248,7 @@ public class Tribes implements InterfaceOptimizer, java.io.Serializable {
if (bestMemPos.firstIsBetter(bestMemPos.getFitness(), bestExp.getFitness())) {
AbstractEAIndividual indy = (AbstractEAIndividual)bestExp.clone();
indy.SetFitness(bestMemPos.getFitness());
((InterfaceDataTypeDouble)indy).SetDoubleDataLamarkian(bestMemPos.getPos());
((InterfaceDataTypeDouble)indy).SetDoubleDataLamarckian(bestMemPos.getPos());
return indy;
} else return bestExp;
}
@ -680,7 +680,7 @@ public class Tribes implements InterfaceOptimizer, java.io.Serializable {
if (tmp == null) System.err.println("Error in Tribes::positionToExplorer!");
TribesExplorer indy = tmp.clone();
indy.clearPosVel();
indy.SetDoubleDataLamarkian(pos.getPos());
indy.SetDoubleDataLamarckian(pos.getPos());
indy.SetFitness(pos.getFitness());
return indy;
}

View File

@ -961,7 +961,7 @@ v[d] = cmin * v[d];
if (obj instanceof double[]) {
double[] x = (double[]) obj;
if (x.length != position.x.length) System.err.println("Init value and requested length doesn't match!");
this.SetDoubleDataLamarkian(x);
this.SetDoubleDataLamarckian(x);
} else {
this.init(opt);
System.err.println("Initial value for ESIndividualDoubleData is not double[]!");
@ -983,7 +983,7 @@ v[d] = cmin * v[d];
position.setDoubleArray(doubleData);
}
public void SetDoubleDataLamarkian(double[] doubleData) {
public void SetDoubleDataLamarckian(double[] doubleData) {
position.setDoubleArray(doubleData);
}

View File

@ -65,7 +65,7 @@ public class DEParameters extends AbstractGOParameters implements InterfaceGOPar
* @return description
*/
public String globalInfo() {
return "This is a Differential Evolution optimization method, please limit DE to real-valued genotypes.";
return "This is a Differential Evolution optimization method, limit DE to real-valued genotypes.";
}
/** This method allows you to set the current optimizing algorithm

View File

@ -70,7 +70,7 @@ public class EPParameters extends AbstractGOParameters implements InterfaceGOPar
* @return description
*/
public String globalInfo() {
return "This is a Evolutionary Programming optimization method, please limit EP to mutation operators only.";
return "This is a Evolutionary Programming optimization method, limit EP to mutation operators only.";
}
public void setOptimizer(InterfaceOptimizer optimizer) {

View File

@ -65,7 +65,7 @@ public class MCParameters extends AbstractGOParameters implements InterfaceGOPar
* @return description
*/
public String globalInfo() {
return "This is a simple Monte-Carlo Search, please use big populations sizes for faster drawing.";
return "This is a simple Monte-Carlo Search, use big populations sizes for faster drawing.";
}
public void setOptimizer(InterfaceOptimizer optimizer) {

View File

@ -59,7 +59,7 @@ public class MOEAParameters extends AbstractGOParameters implements InterfaceGOP
* @return description
*/
public String globalInfo() {
return "This is a multi-objective evoluationary algorithm, please limit MOEA to multi-objective problems (due to the given framework only the fitness of objective one will be plotted).";
return "This is a multi-objective evoluationary algorithm, limit MOEA to multi-objective problems (due to the given framework only the fitness of objective one will be plotted).";
}
/** Assuming that all optimizer will store thier data in a population

View File

@ -71,7 +71,7 @@ public class SAParameters extends AbstractGOParameters implements InterfaceGOPar
* @return description
*/
public String globalInfo() {
return "This is a simple Simulated Annealing Algorithm.";
return "This is a simple Simulated Annealing algorithm.";
}
public void setOptimizer(InterfaceOptimizer optimizer) {