This commit is contained in:
Marcel Kronfeld 2008-04-29 08:59:03 +00:00
parent fc8fc15fc3
commit a707de1b4b

View File

@ -1,134 +0,0 @@
package eva2.server.go.operators.selection;
import eva2.server.go.individuals.AbstractEAIndividual;
import eva2.server.go.populations.Population;
import wsi.ra.math.RNG;
/** Select best individual multiple times if necessary.
* In case of multiple fitness values the selection
* critria is selected randomly for each selection event.
* Created by IntelliJ IDEA.
* User: streiche
* Date: 18.03.2003
* Time: 16:17:10
* To change this template use Options | File Templates.
*/
public class SelectBest implements InterfaceSelection, java.io.Serializable {
private boolean m_ObeyDebsConstViolationPrinciple = true;
public SelectBest() {
}
public SelectBest(SelectBest a) {
this.m_ObeyDebsConstViolationPrinciple = a.m_ObeyDebsConstViolationPrinciple;
}
public Object clone() {
return (Object) new SelectBest(this);
}
/** This method allows an selection method to do some preliminary
* calculations on the population before selection is performed.
* For example: Homologeuos mate could compute all the distances
* before hand...
* @param population The population that is to be processed.
*/
public void prepareSelection(Population population) {
// nothing to prepare here
}
/** This method will select >size< indiviudals from the given
* Population.
* @param population The source population where to select from
* @param size The number of Individuals to select
* @return The selected population.
*/
public Population selectFrom(Population population, int size) {
Population result = new Population();
AbstractEAIndividual tmpIndy = null;
int currentCriteria = 0, critSize;
double currentBestValue;
critSize = ((AbstractEAIndividual)population.get(0)).getFitness().length;
result.setPopulationSize(size);
if (this.m_ObeyDebsConstViolationPrinciple) {
for (int i = 0; i < size; i++) {
currentCriteria = RNG.randomInt(0, critSize-1);
currentBestValue = Double.POSITIVE_INFINITY;
tmpIndy = null;
for (int j = 0; j < population.size(); j++) {
if ((!((AbstractEAIndividual)population.get(j)).violatesConstraint()) && (((AbstractEAIndividual)population.get(j)).getFitness(currentCriteria) < currentBestValue)) {
currentBestValue = ((AbstractEAIndividual)population.get(j)).getFitness(currentCriteria);
tmpIndy = (AbstractEAIndividual)population.get(j);
}
}
if (tmpIndy == null) {
// darn all individuals violate the constraints
// so select the guy with the least worst constraint violation
for (int j = 0; j < population.size(); j++) {
if (((AbstractEAIndividual)population.get(j)).getConstraintViolation() < currentBestValue) {
currentBestValue = ((AbstractEAIndividual)population.get(j)).getConstraintViolation();
tmpIndy = (AbstractEAIndividual)population.get(j);
}
}
}
result.add(tmpIndy);
}
} else {
for (int i = 0; i < size; i++) {
currentCriteria = RNG.randomInt(0, critSize-1);
currentBestValue = Double.POSITIVE_INFINITY;
for (int j = 0; j < population.size(); j++) {
if (((AbstractEAIndividual)population.get(j)).getFitness(currentCriteria) < currentBestValue) {
currentBestValue = ((AbstractEAIndividual)population.get(j)).getFitness(currentCriteria);
tmpIndy = (AbstractEAIndividual)population.get(j);
}
}
result.add(tmpIndy);
}
}
return result;
}
/** This method allows you to select >size< partners for a given Individual
* @param dad The already seleceted parent
* @param avaiablePartners The mating pool.
* @param size The number of partners needed.
* @return The selected partners.
*/
public Population findPartnerFor(AbstractEAIndividual dad, Population avaiablePartners, int size) {
return this.selectFrom(avaiablePartners, size);
}
/**********************************************************************************************************************
* These are for GUI
*/
/** This method returns a global info string
* @return description
*/
public String globalInfo() {
return "This selection method will select THE Best individual (n-times if necessary)." +
"This is a single objective selecting method, it will select in respect to a random criteria.";
}
/** This method will return a naming String
* @return The name of the algorithm
*/
public String getName() {
return "Totalitarian Selection";
}
/** Toggel the use of obeying the constraint violation principle
* of Deb
* @param b The new state
*/
public void setObeyDebsConstViolationPrinciple(boolean b) {
this.m_ObeyDebsConstViolationPrinciple = b;
}
public boolean getObeyDebsConstViolationPrinciple() {
return this.m_ObeyDebsConstViolationPrinciple;
}
public String obeyDebsConstViolationPrincipleToolTip() {
return "Toggle the use of Deb's coonstraint violation principle.";
}
}