diff --git a/src/eva2/server/go/strategies/CHCAdaptiveSearchAlgorithm.java b/src/eva2/server/go/strategies/CHCAdaptiveSearchAlgorithm.java index 8f1608a0..86925b54 100644 --- a/src/eva2/server/go/strategies/CHCAdaptiveSearchAlgorithm.java +++ b/src/eva2/server/go/strategies/CHCAdaptiveSearchAlgorithm.java @@ -16,11 +16,14 @@ import eva2.server.go.problems.B1Problem; import eva2.server.go.problems.InterfaceOptimizationProblem; import eva2.tools.math.RNG; -/** This is an implementation of the CHC Adaptive Search Algorithm by Eselman. It is - * limited to binary data and is based on massively distruptive crossover. I'm not - * shure whether i've implemented this correctly, but i definetly wasn't able to make +/** This is an implementation of the CHC Adaptive Search Algorithm by Eshelman. It is + * limited to binary data and is based on massively disruptive crossover. I'm not + * sure whether i've implemented this correctly, but i definitely wasn't able to make * it competitive to a standard GA.. *sigh* - * This is a implementation of the CHC Apative Search Algorithm. + * This is a implementation of the CHC Adaptive Search Algorithm (Cross generational + * elitist selection, Heterogeneous recombination and Cataclysmic mutation). + * Citation: + * * Copyright: Copyright (c) 2003 * Company: University of Tuebingen, Computer Architecture * @author Felix Streichert diff --git a/src/eva2/server/go/strategies/EvolutionaryProgramming.java b/src/eva2/server/go/strategies/EvolutionaryProgramming.java index c069a0a2..9ae9ac2b 100644 --- a/src/eva2/server/go/strategies/EvolutionaryProgramming.java +++ b/src/eva2/server/go/strategies/EvolutionaryProgramming.java @@ -2,7 +2,6 @@ package eva2.server.go.strategies; import eva2.server.go.InterfacePopulationChangedEventListener; import eva2.server.go.individuals.AbstractEAIndividual; -import eva2.server.go.individuals.GAIndividualBinaryData; import eva2.server.go.operators.selection.InterfaceSelection; import eva2.server.go.operators.selection.SelectEPTournaments; import eva2.server.go.populations.InterfaceSolutionSet; @@ -14,6 +13,8 @@ import eva2.server.go.problems.InterfaceOptimizationProblem; /** Evolutionary programming by Fogel. Works fine but is actually a quite greedy local search * strategy solely based on mutation. To prevent any confusion, the mutation rate is temporaily * set to 1.0. + * Potential citation: the PhD thesis of David B. Fogel (1992). + * * Copyright: Copyright (c) 2003 * Company: University of Tuebingen, Computer Architecture * @author Felix Streichert @@ -74,20 +75,6 @@ public class EvolutionaryProgramming implements InterfaceOptimizer, java.io.Seri population.incrGeneration(); } - /** This method will assign fitness values to all individual in the - * current population. - * @param population The population that is to be evaluated - */ - private void defaultEvaluatePopulation(Population population) { - GAIndividualBinaryData tmpIndy; - for (int i = 0; i < population.size(); i++) { - tmpIndy = (GAIndividualBinaryData) population.get(i); - tmpIndy.SetFitness(0, tmpIndy.defaultEvaulateAsMiniBits()); - population.incrFunctionCalls(); - } - population.incrGeneration(); - } - /** This method will generate the offspring population from the * given population of evaluated individuals. */ diff --git a/src/eva2/server/go/strategies/PopulationBasedIncrementalLearning.java b/src/eva2/server/go/strategies/PopulationBasedIncrementalLearning.java index f1ddda94..16fba301 100644 --- a/src/eva2/server/go/strategies/PopulationBasedIncrementalLearning.java +++ b/src/eva2/server/go/strategies/PopulationBasedIncrementalLearning.java @@ -13,10 +13,15 @@ import eva2.server.go.problems.AbstractOptimizationProblem; import eva2.server.go.problems.B1Problem; import eva2.server.go.problems.InterfaceOptimizationProblem; -/** Population based increamental learning in the PSM by Mommarche +/** Population based incremental learning in the PSM by Monmarche * version with also allows to simulate ant systems due to the flexible - * update rule of V. But both are limited to binary gentypes. + * update rule of V. But both are limited to binary genotypes. * This is a simple implementation of Population Based Incremental Learning. + * + * Nicolas Monmarché , Eric Ramat , Guillaume Dromel , Mohamed Slimane , Gilles Venturini: + * On the similarities between AS, BSC and PBIL: toward the birth of a new meta-heuristic. + * TecReport 215. Univ. de Tours, 1999. + * * Copyright: Copyright (c) 2003 * Company: University of Tuebingen, Computer Architecture * @author Felix Streichert