diff --git a/src/eva2/OptimizerFactory.java b/src/eva2/OptimizerFactory.java
index 1a571feb..05664556 100644
--- a/src/eva2/OptimizerFactory.java
+++ b/src/eva2/OptimizerFactory.java
@@ -132,8 +132,8 @@ public class OptimizerFactory {
de.setProblem(problem);
de.getPopulation().setTargetSize(popsize);
de.setDEType(DETypeEnum.DE2_CurrentToBest);
- de.setF(f);
- de.setK(CR);
+ de.setDifferentialWeight(f);
+ de.setCrossoverRate(CR);
de.setLambda(lambda);
de.addPopulationChangedEventListener(listener);
de.init();
@@ -1476,8 +1476,8 @@ public class OptimizerFactory {
AbstractOptimizationProblem problem) {
DifferentialEvolution de = new DifferentialEvolution();
de.setDEType(DETypeEnum.DE2_CurrentToBest); // this sets current-to-best
- de.setF(0.8);
- de.setK(0.6);
+ de.setDifferentialWeight(0.8);
+ de.setCrossoverRate(0.6);
de.setLambda(0.6);
de.setMt(0.05); // this is not really employed for currentToBest
return makeParams(de, 50, problem, randSeed, getTerminator());
diff --git a/src/eva2/gui/EvAModuleButtonPanelMaker.java b/src/eva2/gui/EvAModuleButtonPanelMaker.java
index c848332d..3e70641d 100644
--- a/src/eva2/gui/EvAModuleButtonPanelMaker.java
+++ b/src/eva2/gui/EvAModuleButtonPanelMaker.java
@@ -85,7 +85,7 @@ public class EvAModuleButtonPanelMaker implements OptimizationStateListener, Ser
public void actionPerformed(ActionEvent event) {
try {
// this means user break
- moduleAdapter.stopOpt();
+ moduleAdapter.stopOptimization();
} catch (Exception ee) {
LOGGER.log(Level.WARNING, "Error while stopping job.", ee);
}
@@ -137,7 +137,7 @@ public class EvAModuleButtonPanelMaker implements OptimizationStateListener, Ser
public void onUserStart() {
try {
- moduleAdapter.startOpt();
+ moduleAdapter.startOptimization();
stopButton.setEnabled(true);
runButton.setEnabled(false);
postProcessButton.setEnabled(false);
diff --git a/src/eva2/gui/Main.java b/src/eva2/gui/Main.java
index da54173a..5b66372e 100644
--- a/src/eva2/gui/Main.java
+++ b/src/eva2/gui/Main.java
@@ -36,39 +36,21 @@ public class Main extends JFrame implements OptimizationStateListener {
* Generated serial version identifier.
*/
private static final long serialVersionUID = 8232856334379977970L;
- private final int splashScreenTime = 2500;
+ private final int splashScreenTime;
private boolean clientInited = false;
- private JExtDesktopPaneToolBar desktopToolBar;
private JDesktopPane desktopPane;
private JPanel configurationPane;
- private JSplitPane horizontalSplit;
- private Runnable initRnbl = null;
+ private Runnable initRunnable = null;
- //private EvAComAdapter comAdapter;
- private transient JMenuBar menuBar;
- private transient JExtMenu menuHelp;
- private transient JExtMenu menuSelHosts;
- private transient JExtMenu menuModule;
- private transient JExtMenu menuOptions;
- private JPanel statusBar;
private transient JProgressBar progressBar;
// Option
private ExtAction actPreferences;
private ExtAction actQuit;
- // LogPanel
- private LoggingPanel logPanel;
private static final Logger LOGGER = Logger.getLogger(Main.class.getName());
- // Module:
- private ExtAction actModuleLoad;
-
// Hosts:
- private ExtAction actHost;
- private ExtAction actAvailableHost;
- private ExtAction actKillHost;
- private ExtAction actKillAllHosts;
private ModuleAdapter currentModuleAdapter = null;
// Help:
@@ -78,13 +60,10 @@ public class Main extends JFrame implements OptimizationStateListener {
// if not null, the module is loaded automatically and no other can be selected
private String useDefaultModule = null; //"Genetic_Optimization";
- private boolean showLoadModules = false;
private boolean localMode = false;
// measuring optimization runtime
private long startTime = 0;
- // remember the module in use
- private transient String currentModule = null;
private boolean withGUI = true;
private boolean withTreeView = false;
private EvATabbedFrameMaker frameMaker = null;
@@ -103,11 +82,7 @@ public class Main extends JFrame implements OptimizationStateListener {
}
public boolean removeOptimizationStateListener(OptimizationStateListener l) {
- if (superListenerList != null) {
- return superListenerList.remove(l);
- } else {
- return false;
- }
+ return superListenerList != null && superListenerList.remove(l);
}
/**
@@ -177,8 +152,8 @@ public class Main extends JFrame implements OptimizationStateListener {
* @param noGui
* @see #Main(String, String, boolean, boolean)
*/
- public Main(final String hostName, InterfaceOptimizationParameters goParams, boolean autorun, boolean noSplash, boolean noGui) {
- this(hostName, null, null, goParams, autorun, noSplash, noGui, false);
+ public Main(final String hostName, InterfaceOptimizationParameters optimizationParameters, boolean autorun, boolean noSplash, boolean noGui) {
+ this(hostName, null, null, optimizationParameters, autorun, noSplash, noGui, false);
}
/**
@@ -231,11 +206,11 @@ public class Main extends JFrame implements OptimizationStateListener {
}
}
- currentModule = null;
comAdapter = EvAComAdapter.getInstance();
- SwingUtilities.invokeLater(initRnbl = new Runnable() {
+ splashScreenTime = 2500;
+ SwingUtilities.invokeLater(initRunnable = new Runnable() {
@Override
public void run() {
@@ -263,7 +238,7 @@ public class Main extends JFrame implements OptimizationStateListener {
if (withGUI) {
frameMaker.onUserStart();
} else {
- currentModuleAdapter.startOpt();
+ currentModuleAdapter.startOptimization();
}
}
// close splash screen
@@ -283,12 +258,12 @@ public class Main extends JFrame implements OptimizationStateListener {
* as it returns, the Main GUI is fully initialized.
*/
public void awaitClientInitialized() {
- if (initRnbl != null) {
- synchronized (initRnbl) {
+ if (initRunnable != null) {
+ synchronized (initRunnable) {
if (!clientInited) {
try {
- initRnbl.wait();
- initRnbl = null;
+ initRunnable.wait();
+ initRunnable = null;
} catch (InterruptedException e) {
e.printStackTrace();
}
@@ -310,7 +285,7 @@ public class Main extends JFrame implements OptimizationStateListener {
*/
public boolean startOptimization() {
if (currentModuleAdapter != null) {
- currentModuleAdapter.startOpt();
+ currentModuleAdapter.startOptimization();
return true;
} else {
return false;
@@ -371,7 +346,7 @@ public class Main extends JFrame implements OptimizationStateListener {
desktopPane = new JExtDesktopPane();
JEFrameRegister.getInstance().setDesktopPane(desktopPane);
/* Creates desktopPane ToolBar to show tiling buttons */
- desktopToolBar = new JExtDesktopPaneToolBar((JExtDesktopPane) desktopPane);
+ JExtDesktopPaneToolBar desktopToolBar = new JExtDesktopPaneToolBar((JExtDesktopPane) desktopPane);
/* Pane to hold ToolBar + DesktopPane */
JPanel desktopPanel = new JPanel(new GridBagLayout());
@@ -397,15 +372,11 @@ public class Main extends JFrame implements OptimizationStateListener {
System.out.println("Error" + e.getMessage());
}
- logPanel = new LoggingPanel(LOGGER);
+ LoggingPanel logPanel = new LoggingPanel(LOGGER);
logPanel.setBorder(BorderFactory.createEmptyBorder(5, 5, 5, 5));
- if (EvAInfo.propShowModules() != null) {
- showLoadModules = true;
- } else {
- showLoadModules = false; // may be set to true again if default module couldnt be loaded
- }
+ boolean showLoadModules = EvAInfo.propShowModules() != null;
createActions();
setSize(800, 600);
@@ -424,7 +395,7 @@ public class Main extends JFrame implements OptimizationStateListener {
add(configurationPane, gbConstraints);
/* SplitPane for desktopPanel and loggingPanel */
- horizontalSplit = new JSplitPane(JSplitPane.VERTICAL_SPLIT, true);
+ JSplitPane horizontalSplit = new JSplitPane(JSplitPane.VERTICAL_SPLIT, true);
horizontalSplit.setTopComponent(desktopPanel);
horizontalSplit.setBottomComponent(logPanel);
horizontalSplit.setDividerLocation(0.25);
@@ -442,7 +413,7 @@ public class Main extends JFrame implements OptimizationStateListener {
add(horizontalSplit, gbConstraints);
/* StatusBar of the main frame */
- statusBar = new JPanel(new FlowLayout(FlowLayout.RIGHT));
+ JPanel statusBar = new JPanel(new FlowLayout(FlowLayout.RIGHT));
JPanel statusBarControls = new JPanel();
statusBarControls.setLayout(new BoxLayout(statusBarControls, BoxLayout.LINE_AXIS));
@@ -504,9 +475,7 @@ public class Main extends JFrame implements OptimizationStateListener {
}
}
});
- }
- if (withGUI) {
LOGGER.log(Level.INFO, "Working directory is: {0}", System.getProperty("user.dir"));
LOGGER.log(Level.INFO, "Class path is: {0}", System.getProperty("java.class.path", "."));
@@ -754,12 +723,12 @@ public class Main extends JFrame implements OptimizationStateListener {
* Create the main menu and add actions.
*/
private void buildMenu() {
- menuBar = new JMenuBar();
+ JMenuBar menuBar = new JMenuBar();
setJMenuBar(menuBar);
- menuModule = new JExtMenu("&Module");
+ JExtMenu menuModule = new JExtMenu("&Module");
//menuModule.add(actModuleLoad);
- menuSelHosts = new JExtMenu("&Select Hosts");
+ JExtMenu menuSelHosts = new JExtMenu("&Select Hosts");
//menuSelHosts.setToolTipText("Select a host for the server application");
//menuSelHosts.add(actHost);
//menuSelHosts.add(actAvailableHost);
@@ -767,13 +736,13 @@ public class Main extends JFrame implements OptimizationStateListener {
//menuSelHosts.add(actKillHost);
//menuSelHosts.add(actKillAllHosts);
- menuHelp = new JExtMenu("&Help");
+ JExtMenu menuHelp = new JExtMenu("&Help");
menuHelp.add(actHelp);
menuHelp.addSeparator();
menuHelp.add(actAbout);
menuHelp.add(actLicense);
- menuOptions = new JExtMenu("&Options");
+ JExtMenu menuOptions = new JExtMenu("&Options");
menuOptions.add(actPreferences);
//menuOptions.add(menuSelHosts);
menuOptions.addSeparator();
@@ -797,7 +766,7 @@ public class Main extends JFrame implements OptimizationStateListener {
public InterfaceOptimizationParameters getGOParameters() {
if (currentModuleAdapter != null) {
if (currentModuleAdapter instanceof AbstractModuleAdapter) {
- return ((AbstractModuleAdapter) currentModuleAdapter).getGOParameters();
+ return ((AbstractModuleAdapter) currentModuleAdapter).getOptimizationParameters();
}
}
return null;
@@ -816,12 +785,8 @@ public class Main extends JFrame implements OptimizationStateListener {
*
* @return
*/
- public boolean isOptRunning() {
- if ((currentModuleAdapter != null) && (currentModuleAdapter instanceof AbstractModuleAdapter)) {
- return ((AbstractModuleAdapter) currentModuleAdapter).isOptRunning();
- } else {
- return false;
- }
+ public boolean isOptimizationRunning() {
+ return (currentModuleAdapter != null) && (currentModuleAdapter instanceof AbstractModuleAdapter) && ((AbstractModuleAdapter) currentModuleAdapter).isOptRunning();
}
private void loadSpecificModule(String selectedModule, InterfaceOptimizationParameters goParams) {
@@ -838,10 +803,7 @@ public class Main extends JFrame implements OptimizationStateListener {
URL baseDir = getClass().getClassLoader().getResource("");
String cp = System.getProperty("java.class.path", ".");
String dir = (baseDir == null) ? System.getProperty("user.dir") : baseDir.getPath();
- // System.err.println("Working dir: " + dir);
- /*if (baseDir == null) {
- throw new RuntimeException("Cannot launch EvA2 due to an access restriction. If you are using Java Web Start, please download the application and try again.");
- }*/
+
if (!cp.contains(dir)) {
// this was added due to matlab not adding base dir to base path...
System.err.println("classpath does not contain base directory!");
@@ -852,10 +814,9 @@ public class Main extends JFrame implements OptimizationStateListener {
loadSpecificModule(selectedModule, goParams); // end recursive call! handle with care!
return;
}
- showLoadModules = true;
} else {
newModuleAdapter.setConnection(!localMode);
- newModuleAdapter.addOptimizationStateListener((OptimizationStateListener) this);
+ newModuleAdapter.addOptimizationStateListener(this);
try {
if (withGUI) {
// this (or rather: EvAModuleButtonPanelMaker) is where the start button etc come from!
@@ -864,7 +825,6 @@ public class Main extends JFrame implements OptimizationStateListener {
/* This is the left TabPane on the main frame */
JPanel moduleContainer = frameMaker.makePanel();
- boolean wasVisible = configurationPane.isVisible();
configurationPane.setVisible(false);
configurationPane.removeAll();
@@ -873,7 +833,7 @@ public class Main extends JFrame implements OptimizationStateListener {
/* ToDo: Find a way to properly add the TreeView to the GOPanel */
if (withTreeView && (newModuleAdapter instanceof AbstractModuleAdapter)) {
JComponent tree = null;
- tree = getEvATreeView(frameMaker.getGOPanel(), "OptimizationParameters", ((AbstractModuleAdapter) newModuleAdapter).getGOParameters());
+ tree = getEvATreeView(frameMaker.getGOPanel(), "OptimizationParameters", ((AbstractModuleAdapter) newModuleAdapter).getOptimizationParameters());
gbConstraints.gridx = 0;
gbConstraints.gridy = 0;
gbConstraints.fill = GridBagConstraints.BOTH;
@@ -896,29 +856,17 @@ public class Main extends JFrame implements OptimizationStateListener {
gbConstraints2.gridx = 0;
gbConstraints2.gridy = 0;
gbConstraints2.fill = GridBagConstraints.VERTICAL;
- //gbConstraints2.gridheight = GridBagConstraints.REMAINDER;
gbConstraints2.weighty = 1.0;
configurationPane.add(moduleContainer, gbConstraints2);
configurationPane.validate();
}
- currentModule = selectedModule;
+
} catch (Exception e) {
- currentModule = null;
LOGGER.log(Level.SEVERE, "Error while newModulAdapter.getModulFrame(): " + e.getMessage(), e);
EVAERROR.EXIT("Error while newModulAdapter.getModulFrame(): " + e.getMessage());
}
-// try { TODO whats this?
-// newModuleAdapter.setConnection(true);
-// } catch (Exception e) {
-// e.printStackTrace();
-// m_LogPanel.logMessage("Error while m_ComAdapter.AddRMIPlotListener Host: " + e.getMessage());
-// EVAERROR.EXIT("Error while m_ComAdapter.AddRMIPlotListener: " + e.getMessage());
-// }
- // set mode (rmi or not)
- // ModuladapterListe adden
-// m_ModuleAdapterList.add(newModuleAdapter);
currentModuleAdapter = newModuleAdapter;
}
}
@@ -927,6 +875,7 @@ public class Main extends JFrame implements OptimizationStateListener {
* Create a tree view of an object based on EvATreeNode. It is encapsulated
* in a JScrollPane.
*
+ * @param goPanel
* @param title
* @param object
* @return
diff --git a/src/eva2/gui/editor/GenericObjectEditor.java b/src/eva2/gui/editor/GenericObjectEditor.java
index b5217894..d72339f1 100644
--- a/src/eva2/gui/editor/GenericObjectEditor.java
+++ b/src/eva2/gui/editor/GenericObjectEditor.java
@@ -144,10 +144,10 @@ public class GenericObjectEditor implements PropertyEditor {
try {
BeanInfo bi = Introspector.getBeanInfo(cls);
PropertyDescriptor[] props = bi.getPropertyDescriptors();
- for (int i = 0; i < props.length; i++) {
- if ((props[i].getName().equals(property))) {
- if (expertValue != props[i].isExpert()) {
- props[i].setExpert(expertValue);
+ for (PropertyDescriptor prop : props) {
+ if ((prop.getName().equals(property))) {
+ if (expertValue != prop.isExpert()) {
+ prop.setExpert(expertValue);
}
}
}
@@ -174,10 +174,10 @@ public class GenericObjectEditor implements PropertyEditor {
try {
BeanInfo bi = Introspector.getBeanInfo(cls);
PropertyDescriptor[] props = bi.getPropertyDescriptors();
- for (int i = 0; i < props.length; i++) {
- if ((props[i].getName().equals(property))) {
- if (hide != props[i].isHidden()) {
- props[i].setHidden(hide);
+ for (PropertyDescriptor prop : props) {
+ if ((prop.getName().equals(property))) {
+ if (hide != prop.isHidden()) {
+ prop.setHidden(hide);
}
return true;
}
@@ -305,7 +305,6 @@ public class GenericObjectEditor implements PropertyEditor {
*/
@Override
public void setValue(Object o) {
- //System.err.println("setValue()" + m_ClassType.toString());
if (o == null || classType == null) {
logger.log(Level.WARNING, "No ClassType set up for GenericObjectEditor!");
@@ -315,15 +314,14 @@ public class GenericObjectEditor implements PropertyEditor {
if (classType.isPrimitive()) {
System.err.println("setValue object not of correct type! Expected " + classType.getName() + ", got " + o.getClass().getName());
System.err.println("setting primitive type");
- setObject((Object) o);
- //throw new NullPointerException("ASDF");
+ setObject(o);
} else {
System.err.println("setValue object not of correct type! Expected " + classType.getName() + ", got " + o.getClass().getName());
}
return;
}
- setObject((Object) o);
+ setObject(o);
if (editorComponent != null) {
editorComponent.updateChooser();
}
diff --git a/src/eva2/gui/editor/GenericStringListSelectionEditor.java b/src/eva2/gui/editor/GenericStringListSelectionEditor.java
deleted file mode 100644
index 52126706..00000000
--- a/src/eva2/gui/editor/GenericStringListSelectionEditor.java
+++ /dev/null
@@ -1,66 +0,0 @@
-//package eva2.gui;
-//
-//
-//import javax.swing.*;
-//
-//import eva2.optimization.individuals.codings.gp.AbstractGPNode;
-//import eva2.optimization.individuals.codings.gp.GPArea;
-//
-//import java.beans.PropertyEditor;
-//import java.beans.PropertyChangeSupport;
-//import java.beans.PropertyChangeListener;
-//import java.awt.*;
-//import java.awt.event.ActionListener;
-//import java.awt.event.ActionEvent;
-//import java.util.ArrayList;
-//
-///**
-// * TODO this should be redundant with the new GenericObjectListEditor.
-// *
-// * Created by IntelliJ IDEA.
-// * User: streiche
-// * Date: 23.03.2004
-// * Time: 15:03:29
-// * To change this template use File | Settings | File Templates.
-// */
-//public class GenericStringListSelectionEditor extends AbstractListSelectionEditor {
-// private PropertyStringList m_List;
-//
-// @Override
-// protected int getElementCount() {
-// return m_List.getStrings().length;
-// }
-//
-// @Override
-// protected String getElementName(int i) {
-// return m_List.getStrings()[i];
-// }
-//
-// @Override
-// protected boolean isElementAllowed(int i) {
-// return this.m_List.getSelection()[i];
-// }
-//
-// @Override
-// protected boolean performOnAction() {
-// for (int i = 0; i < this.m_BlackCheck.length; i++) {
-// this.m_List.setSelectionForElement(i, this.m_BlackCheck[i].isSelected());
-// }
-// return true;
-// }
-//
-// @Override
-// protected boolean setObject(Object o) {
-// if (o instanceof PropertyStringList) {
-// this.m_List = (PropertyStringList) o;
-// return true;
-// } else return false;
-// }
-//
-// /** Retruns the current object.
-// * @return the current object
-// */
-// public Object getValue() {
-// return this.m_List;
-// }
-//}
\ No newline at end of file
diff --git a/src/eva2/optimization/modules/AbstractModuleAdapter.java b/src/eva2/optimization/modules/AbstractModuleAdapter.java
index ccc2fc03..698580c8 100644
--- a/src/eva2/optimization/modules/AbstractModuleAdapter.java
+++ b/src/eva2/optimization/modules/AbstractModuleAdapter.java
@@ -62,7 +62,7 @@ abstract public class AbstractModuleAdapter implements ModuleAdapter, Serializab
* Start optimization on processor.
*/
@Override
- public void startOpt() {
+ public void startOptimization() {
processor.startOpt();
}
@@ -70,7 +70,7 @@ abstract public class AbstractModuleAdapter implements ModuleAdapter, Serializab
* Restart optimization on processor.
*/
@Override
- public void restartOpt() {
+ public void restartOptimization() {
processor.restartOpt();
}
@@ -78,7 +78,7 @@ abstract public class AbstractModuleAdapter implements ModuleAdapter, Serializab
* Stop optimization on processor.
*/
@Override
- public void stopOpt() {
+ public void stopOptimization() {
// This means user break
processor.stopOpt();
}
@@ -108,7 +108,7 @@ abstract public class AbstractModuleAdapter implements ModuleAdapter, Serializab
}
}
- public InterfaceOptimizationParameters getGOParameters() {
+ public InterfaceOptimizationParameters getOptimizationParameters() {
if ((processor != null) && (processor instanceof Processor)) {
return ((Processor) processor).getGOParams();
} else {
@@ -116,7 +116,7 @@ abstract public class AbstractModuleAdapter implements ModuleAdapter, Serializab
}
}
- public void setGOParameters(InterfaceOptimizationParameters goParams) {
+ public void setOptimizationParameters(InterfaceOptimizationParameters goParams) {
if ((processor != null) && (processor instanceof Processor)) {
((Processor) processor).setGOParams(goParams);
}
diff --git a/src/eva2/optimization/modules/DEParameters.java b/src/eva2/optimization/modules/DEParameters.java
index 02cbbfc0..859af2e2 100644
--- a/src/eva2/optimization/modules/DEParameters.java
+++ b/src/eva2/optimization/modules/DEParameters.java
@@ -107,15 +107,15 @@ public class DEParameters extends AbstractOptimizationParameters implements Inte
* @param f
*/
public void setF(double f) {
- ((DifferentialEvolution) this.optimizer).setF(f);
+ ((DifferentialEvolution) this.optimizer).setDifferentialWeight(f);
}
public double getF() {
- return ((DifferentialEvolution) this.optimizer).getF();
+ return ((DifferentialEvolution) this.optimizer).getDifferentialWeight();
}
- public String fTipText() {
- return "F is a real and constant factor which controlls the ampllification of the differential variation.";
+ public String differentialWeightTipText() {
+ return "F is a real and constant factor which controlls the amplification of the differential variation.";
}
/**
@@ -124,14 +124,14 @@ public class DEParameters extends AbstractOptimizationParameters implements Inte
* @param k
*/
public void setK(double k) {
- ((DifferentialEvolution) this.optimizer).setK(k);
+ ((DifferentialEvolution) this.optimizer).setCrossoverRate(k);
}
public double getK() {
- return ((DifferentialEvolution) this.optimizer).getK();
+ return ((DifferentialEvolution) this.optimizer).getCrossoverRate();
}
- public String kTipText() {
+ public String crossoverRateTipText() {
return "Probability of alteration through DE1.";
}
diff --git a/src/eva2/optimization/modules/GenericModuleAdapter.java b/src/eva2/optimization/modules/GenericModuleAdapter.java
index 4ff2d45b..e3c77923 100644
--- a/src/eva2/optimization/modules/GenericModuleAdapter.java
+++ b/src/eva2/optimization/modules/GenericModuleAdapter.java
@@ -140,8 +140,8 @@ public class GenericModuleAdapter extends AbstractModuleAdapter implements Seria
}
@Override
- public void setGOParameters(InterfaceOptimizationParameters goParams) {
- super.setGOParameters(goParams);
+ public void setOptimizationParameters(InterfaceOptimizationParameters goParams) {
+ super.setOptimizationParameters(goParams);
paramPanel.getEditor().setValue(goParams);
}
}
diff --git a/src/eva2/optimization/modules/ModuleAdapter.java b/src/eva2/optimization/modules/ModuleAdapter.java
index 9a7e8db4..aa697e29 100644
--- a/src/eva2/optimization/modules/ModuleAdapter.java
+++ b/src/eva2/optimization/modules/ModuleAdapter.java
@@ -21,7 +21,7 @@ public interface ModuleAdapter extends OptimizationStateListener {
EvATabbedFrameMaker getModuleFrame();
- void startOpt(); // called from client
+ void startOptimization(); // called from client
/**
* Schedule a certain job to a job list.
@@ -30,9 +30,9 @@ public interface ModuleAdapter extends OptimizationStateListener {
*/
OptimizationJob scheduleJob();
- void restartOpt();
+ void restartOptimization();
- void stopOpt();
+ void stopOptimization();
//void runScript();
diff --git a/src/eva2/optimization/modules/Processor.java b/src/eva2/optimization/modules/Processor.java
index cc6e9814..ab945f20 100644
--- a/src/eva2/optimization/modules/Processor.java
+++ b/src/eva2/optimization/modules/Processor.java
@@ -32,7 +32,7 @@ import javax.swing.JOptionPane;
/**
* The Processor may run as a thread permanently (GenericModuleAdapter) and is
- * then stopped and started by a switch in startOpt/stopOpt.
+ * then stopped and started by a switch in startOptimization/stopOptimization.
*
* Processor also handles adaptive parameter control by checking for the method
* getParamControl in (so far) Optimizer and Problem instances. The return-value
@@ -214,7 +214,7 @@ public class Processor extends Thread implements InterfaceProcessor, InterfacePo
Population resultPop = null;
if (!isOptRunning()) {
- System.err.println("warning, this shouldnt happen in processor! Was startOpt called?");
+ System.err.println("warning, this shouldnt happen in processor! Was startOptimization called?");
setOptRunning(true);
}
diff --git a/src/eva2/optimization/operator/postprocess/PostProcess.java b/src/eva2/optimization/operator/postprocess/PostProcess.java
index 404f1193..57ba5172 100644
--- a/src/eva2/optimization/operator/postprocess/PostProcess.java
+++ b/src/eva2/optimization/operator/postprocess/PostProcess.java
@@ -442,14 +442,14 @@ public class PostProcess {
gda.initByPopulation(pop, false);
int funCallsBefore = pop.getFunctionCalls();
- pop.SetFunctionCalls(baseEvals);
+ pop.setFunctionCalls(baseEvals);
OptimizerRunnable ppRunnable = new OptimizerRunnable(OptimizerFactory.makeParams(gda, pop, problem, 0, term), true);
runPP(ppRunnable);
// ppRunnable.getStats().createNextGenerationPerformed(gda.getPopulation(), gda, null);
int funCallsDone = pop.getFunctionCalls() - baseEvals;
- pop.SetFunctionCalls(funCallsBefore);
+ pop.setFunctionCalls(funCallsBefore);
return funCallsDone;
}
@@ -476,26 +476,16 @@ public class PostProcess {
nms.setGenerationCycle(5);
nms.initByPopulation(pop, false);
int funCallsBefore = pop.getFunctionCalls();
- pop.SetFunctionCalls(baseEvals);
+ pop.setFunctionCalls(baseEvals);
OptimizerRunnable ppRunnable = new OptimizerRunnable(OptimizerFactory.makeParams(nms, pop, problem, 0, term), true);
// as nms creates a new population and has already evaluated them, send a signal to stats
ppRunnable.getStats().createNextGenerationPerformed(nms.getPopulation(), nms, null);
-// if (problem instanceof InterfaceFirstOrderDerivableProblem) {
-// double[] x = pop.getBestEAIndividual().getDoublePosition();
-// System.out.println("grads: " + BeanInspector.toString(((InterfaceFirstOrderDerivableProblem)problem).getFirstOrderGradients(x)));
-// }
-
runPP(ppRunnable);
-// if (problem instanceof InterfaceFirstOrderDerivableProblem) {
-// double[] x = pop.getBestEAIndividual().getDoublePosition();
-// System.out.println("grads: " + BeanInspector.toString(((InterfaceFirstOrderDerivableProblem)problem).getFirstOrderGradients(x)));
-// }
-
int funCallsDone = pop.getFunctionCalls() - baseEvals;
- pop.SetFunctionCalls(funCallsBefore);
+ pop.setFunctionCalls(funCallsBefore);
return new Pair(funCallsDone, ppRunnable.wasAborted());
}
@@ -529,7 +519,7 @@ public class PostProcess {
OptimizationParameters cmaParams = OptimizerFactory.makeParams(es, pop, problem, 0, term);
int funCallsBefore = pop.getFunctionCalls();
- pop.SetFunctionCalls(baseEvals);
+ pop.setFunctionCalls(baseEvals);
OptimizerRunnable ppRunnable = new OptimizerRunnable(cmaParams, true);
ppRunnable.getStats().createNextGenerationPerformed(cmaParams.getOptimizer().getPopulation(), cmaParams.getOptimizer(), null);
@@ -605,7 +595,6 @@ public class PostProcess {
}
subPop = NelderMeadSimplex.createNMSPopulation(candidates.getEAIndividual(index), absToRelPerturb(perturb, range), range, false);
}
-// subPop.setSameParams(candidates);
return subPop;
}
@@ -723,7 +712,6 @@ public class PostProcess {
for (int i = 0; i < candidates.size(); i++) { // improve each single sub pop
subPop = nmPops.get(i);
term.init(prob);
-// if (TRACE) System.out.println("*** before " + subPop.getBestEAIndividual().getStringRepresentation());
switch (method) {
case nelderMead:
@@ -744,23 +732,15 @@ public class PostProcess {
break;
}
- // if (TRACE) System.out.println("*** after: " + subPop.getBestEAIndividual().getStringRepresentation());
if (checkRange(subPop.getBestEAIndividual())) {
- // and replace corresponding individual (should usually be better)
-// if (subPop.getBestEAIndividual().isDominant(candidates.getEAIndividual(i))) { // TODO Multiobjective???
if (subPop.getBestEAIndividual().getFitness(0) < candidates.getEAIndividual(i).getFitness(0)) {
-// System.out.println("moved by "+ PhenotypeMetric.dist(candidates.getEAIndividual(i), subPop.getBestEAIndividual()));
- subPop.getBestEAIndividual().putData(movedDistanceKey, new Double(PhenotypeMetric.dist(candidates.getEAIndividual(i), subPop.getBestEAIndividual())));
-// subPop.getBestEAIndividual().putData(movedToPositionKey, subPop.getBestEAIndividual().getDoublePosition());
- // ^ this makes no sense here since the new position is returned anyways by replacing the candidate individual
+ subPop.getBestEAIndividual().putData(movedDistanceKey, PhenotypeMetric.dist(candidates.getEAIndividual(i), subPop.getBestEAIndividual()));
candidates.set(i, subPop.getBestEAIndividual());
}
} else {
// TODO esp. in nelder mead
System.err.println("Warning, individual left the problem range during PP!");
}
-
-// if (TRACE) System.out.println("refined to " + subPop.getBestEAIndividual().getStringRepresentation());
}
return stepsPerf;
@@ -864,9 +844,7 @@ public class PostProcess {
rnbl.getGOParams().setDoPostProcessing(false);
rnbl.setVerbosityLevel(StatisticsParameter.VERBOSITY_NONE);
ppRunnables.add(rnbl);
-// System.err.println("Starting runbl " + rnbl);
rnbl.run();
-// System.err.println("Aborted: " + rnbl.wasAborted());
rnbl.getGOParams().setDoPostProcessing(true);
ppRunnables.remove(rnbl);
}
@@ -875,16 +853,15 @@ public class PostProcess {
* Stop the post processing thread with the given ID.
*/
public static void stopPP(int rnblID) {
-// System.err.println("Stopping pp " + rnblID);
OptimizerRunnable rnbl = getRunnable(rnblID);
stopPP(rnbl);
}
private static OptimizerRunnable getRunnable(int rnblID) {
synchronized (ppRunnables) {
- for (int i = 0; i < ppRunnables.size(); i++) {
- if (rnblID == ppRunnables.get(i).getID()) {
- return ppRunnables.get(i);
+ for (OptimizerRunnable ppRunnable : ppRunnables) {
+ if (rnblID == ppRunnable.getID()) {
+ return ppRunnable;
}
}
}
@@ -895,7 +872,6 @@ public class PostProcess {
* Stop the post processing if its currently running.
*/
public static void stopPP(OptimizerRunnable rnbl) {
-// System.err.println("Stopping rnbl " + rnbl);
if (rnbl != null) {
synchronized (rnbl) {
rnbl.stopOpt();
@@ -954,7 +930,6 @@ public class PostProcess {
OptimizerRunnable runnable = OptimizerFactory.getOptRunnable(OptimizerFactory.STD_GA, problem, 100, null);
runnable.run();
Population pop = runnable.getGOParams().getOptimizer().getPopulation();
-// System.out.println("no optima found: " + mmp.getNumberOfFoundOptima(pop));
Population found = getFoundOptima(pop, mmp.getRealOptima(), 0.05, true);
System.out.println("all found (" + found.size() + "): " + BeanInspector.toString(found));
@@ -963,8 +938,6 @@ public class PostProcess {
int evalCnt = 0;
while (popD.tail() > 0.001) {
i++;
-// public static PopDoublePair clusterHC(pop, problem, sigmaCluster, funCalls, keepClusterRatio, mute) {
-
popD = clusterLocalSearch(PostProcessMethod.hillClimber, popD.head(), problem, 0.01, 1500, 0.1, new MutateESFixedStepSize(0.02));
evalCnt += popD.head().getFunctionCalls();
System.out.println("popsize is " + popD.head().size());
@@ -972,11 +945,6 @@ public class PostProcess {
found = getFoundOptima(popD.head(), mmp.getRealOptima(), 0.05, true);
System.out.println("found at " + i + " (" + found.size() + "): " + BeanInspector.toString(found));
System.out.println("funcalls: " + evalCnt);
-// System.out.println(BeanInspector.toString(pop.getMeanFitness()));
-
-// System.out.println("no optima found: " + mmp.getNumberOfFoundOptima(pop));
-// System.out.println("best after: " + AbstractEAIndividual.getDefaultStringRepresentation(pop.getBestEAIndividual()));
-
}
/**
@@ -999,7 +967,6 @@ public class PostProcess {
Population clust = (Population) clusterBest(pop, new ClusteringDensityBased(sigmaCluster, 2), keepClusterRatio, KEEP_LONERS, BEST_RAND).clone();
- //clust.addPopulationChangedEventListener()
double[] meanFit = clust.getMeanFitness();
if (TRACE) {
@@ -1008,7 +975,7 @@ public class PostProcess {
int evalsDone = processSingleCandidates(method, clust, funCalls, sigmaCluster / 2., problem, mute);
- clust.SetFunctionCalls(evalsBefore + evalsDone);
+ clust.setFunctionCalls(evalsBefore + evalsDone);
double improvement = EuclideanMetric.euclideanDistance(meanFit, clust.getMeanFitness());
if (TRACE) {
@@ -1037,21 +1004,6 @@ public class PostProcess {
listener.println("found " + getFoundOptima(solutions, mmkProb.getRealOptima(), epsilon, true).size() + " for epsilon = " + epsilon + ", maxPeakRatio: " + mmkProb.getMaximumPeakRatio(solutions));
}
}
- } else {
- // TODO in this form it may cost a lot of time and cant be stopped, which is bad
-// double epsilonPhenoSpace = 0.01, epsilonFitConv = 1e-10, clusterSigma = 0.;
-// Population extrOpts;
-// for (int k=0; k<3; k++) {
-// extrOpts = prob.extractPotentialOptima(solutions, epsilonPhenoSpace, epsilonFitConv, clusterSigma, -1);
-// listener.println("estimated number of found optima: " + extrOpts.size() + " with crit. " + epsilonPhenoSpace);
-// if (extrOpts.size() > 0) {
-// listener.println("fit measures: ");
-// int critCnt = extrOpts.getEAIndividual(0).getFitness().length;
-// for (int i=0; i
List jobs = jobList.getSelectedJobs();
if (jobs.size() == 1) {
OptimizationJob job = jobs.get(0);
- AbstractOptimizationParameters curParams = (AbstractOptimizationParameters) ((AbstractModuleAdapter) jobList.module).getGOParameters();
+ AbstractOptimizationParameters curParams = (AbstractOptimizationParameters) ((AbstractModuleAdapter) jobList.module).getOptimizationParameters();
curParams.setSameParams((AbstractOptimizationParameters) job.getGOParams());
- ((GenericModuleAdapter) jobList.module).setGOParameters(curParams);
+ ((GenericModuleAdapter) jobList.module).setOptimizationParameters(curParams);
((GenericModuleAdapter) jobList.module).getStatistics().getStatisticsParameter().setMultiRuns(job.getNumRuns());
((GenericModuleAdapter) jobList.module).getStatistics().getStatisticsParameter().setFieldSelection(job.getFieldSelection(((GenericModuleAdapter) jobList.module).getStatistics().getStatisticsParameter().getFieldSelection()));
} else {
diff --git a/src/eva2/optimization/strategies/ClusteringHillClimbing.java b/src/eva2/optimization/strategies/ClusteringHillClimbing.java
index c167a6b5..46ab9cc6 100644
--- a/src/eva2/optimization/strategies/ClusteringHillClimbing.java
+++ b/src/eva2/optimization/strategies/ClusteringHillClimbing.java
@@ -200,7 +200,7 @@ public class ClusteringHillClimbing implements InterfacePopulationChangedEventLi
System.out.println("evalCycle: " + hcEvalCycle + ", evals now: " + evalsNow);
}
popD = PostProcess.clusterLocalSearch(localSearchMethod, m_Population, (AbstractOptimizationProblem) m_Problem, sigmaClust, evalsNow, 0.5, mutator);
- // (m_Population, (AbstractOptimizationProblem)problem, sigmaClust, hcEvalCycle - (m_Population.getFunctionCalls() % hcEvalCycle), 0.5);
+ // (population, (AbstractOptimizationProblem)problem, sigmaClust, hcEvalCycle - (population.getFunctionCalls() % hcEvalCycle), 0.5);
if (popD.head().getFunctionCalls() == funCallsBefore) {
System.err.println("Bad case, increasing allowed evaluations!");
evalsNow = Math.max(evalsNow++, (int) (evalsNow * 1.2));
diff --git a/src/eva2/optimization/strategies/DifferentialEvolution.java b/src/eva2/optimization/strategies/DifferentialEvolution.java
index ecda403c..3e325d47 100644
--- a/src/eva2/optimization/strategies/DifferentialEvolution.java
+++ b/src/eva2/optimization/strategies/DifferentialEvolution.java
@@ -32,19 +32,19 @@ import java.util.Vector;
*/
public class DifferentialEvolution implements InterfaceOptimizer, java.io.Serializable {
- protected Population m_Population = new Population();
+ protected Population population = new Population();
protected transient Population children = null;
- protected AbstractOptimizationProblem m_Problem = new F1Problem();
- private DETypeEnum m_DEType;
+ protected AbstractOptimizationProblem optimizationProblem = new F1Problem();
+ private DETypeEnum DEType;
@Parameter(name = "F", description = "Differential Weight")
- private double m_F = 0.8;
+ private double differentialWeight = 0.8;
@Parameter(name = "CR", description = "Crossover Rate")
- private double m_k = 0.6; // AKA CR
+ private double crossoverRate = 0.6; // AKA CR
@Parameter(name = "Lambda", description = "Lambda")
- private double m_Lambda = 0.6;
+ private double lambda = 0.6;
private double m_Mt = 0.05;
private int maximumAge = -1;
@@ -65,15 +65,15 @@ public class DifferentialEvolution implements InterfaceOptimizer, java.io.Serial
*/
public DifferentialEvolution() {
// sets DE2 as default
- m_DEType = DETypeEnum.DE2_CurrentToBest;
+ DEType = DETypeEnum.DE2_CurrentToBest;
}
public DifferentialEvolution(int popSize, DETypeEnum type, double f, double k, double lambda, double mt) {
- m_Population = new Population(popSize);
- m_DEType = type;
- m_F = f;
- m_k = k;
- m_Lambda = lambda;
+ population = new Population(popSize);
+ DEType = type;
+ differentialWeight = f;
+ crossoverRate = k;
+ this.lambda = lambda;
m_Mt = mt;
}
@@ -83,13 +83,13 @@ public class DifferentialEvolution implements InterfaceOptimizer, java.io.Serial
* @param a
*/
public DifferentialEvolution(DifferentialEvolution a) {
- this.m_DEType = a.m_DEType;
- this.m_Population = (Population) a.m_Population.clone();
- this.m_Problem = (AbstractOptimizationProblem) a.m_Problem.clone();
+ this.DEType = a.DEType;
+ this.population = (Population) a.population.clone();
+ this.optimizationProblem = (AbstractOptimizationProblem) a.optimizationProblem.clone();
this.m_Identifier = a.m_Identifier;
- this.m_F = a.m_F;
- this.m_k = a.m_k;
- this.m_Lambda = a.m_Lambda;
+ this.differentialWeight = a.differentialWeight;
+ this.crossoverRate = a.crossoverRate;
+ this.lambda = a.lambda;
this.m_Mt = a.m_Mt;
this.maximumAge = a.maximumAge;
@@ -106,9 +106,9 @@ public class DifferentialEvolution implements InterfaceOptimizer, java.io.Serial
@Override
public void init() {
- this.m_Problem.initializePopulation(this.m_Population);
-// children = new Population(m_Population.size());
- this.evaluatePopulation(this.m_Population);
+ this.optimizationProblem.initializePopulation(this.population);
+// children = new Population(population.size());
+ this.evaluatePopulation(this.population);
this.firePropertyChangedEvent(Population.NEXT_GENERATION_PERFORMED);
}
@@ -124,14 +124,14 @@ public class DifferentialEvolution implements InterfaceOptimizer, java.io.Serial
*/
@Override
public void initByPopulation(Population pop, boolean reset) {
- this.m_Population = (Population) pop.clone();
+ this.population = (Population) pop.clone();
if (reset) {
- this.m_Population.init();
- this.evaluatePopulation(this.m_Population);
+ this.population.init();
+ this.evaluatePopulation(this.population);
this.firePropertyChangedEvent(Population.NEXT_GENERATION_PERFORMED);
}
-// if (reset) this.m_Population.init();
-// else children = new Population(m_Population.size());
+// if (reset) this.population.init();
+// else children = new Population(population.size());
}
/**
@@ -140,7 +140,7 @@ public class DifferentialEvolution implements InterfaceOptimizer, java.io.Serial
* @param population The population that is to be evaluated
*/
private void evaluatePopulation(Population population) {
- this.m_Problem.evaluate(population);
+ this.optimizationProblem.evaluate(population);
population.incrGeneration();
}
@@ -266,7 +266,7 @@ public class DifferentialEvolution implements InterfaceOptimizer, java.io.Serial
x1 = indy.getDoubleData();
result = new double[x1.length];
- if (m_Problem instanceof AbstractMultiObjectiveOptimizationProblem) {
+ if (optimizationProblem instanceof AbstractMultiObjectiveOptimizationProblem) {
// implements MODE for the multi-objective case: a dominating individual is selected for difference building
Population domSet = pop.getDominatingSet((AbstractEAIndividual) indy);
if (domSet.size() > 0) {
@@ -290,27 +290,6 @@ public class DifferentialEvolution implements InterfaceOptimizer, java.io.Serial
return result;
}
- /**
- * This method returns two parents to the original individual
- *
- * @param pop The population to choose from
- * @return the delta vector
- */
-// private double[][] chooseRandomParents(Population pop) {
-// InterfaceESIndividual indy1, indy2;
-// double[][] result = new double[2][];
-// try {
-// indy1 = (InterfaceESIndividual)pop.get(RNG.randomInt(0, pop.size()-1));
-// indy2 = (InterfaceESIndividual)pop.get(RNG.randomInt(0, pop.size()-1));
-// } catch (java.lang.ClassCastException e) {
-// System.out.println("Differential Evolution currently requires InterfaceESIndividual as basic data type!");
-// return result;
-// }
-// result[0] = indy1.getDGenotype();
-// result[1] = indy2.getDGenotype();
-// return result;
-// }
-
/**
* This method will generate one new individual from the given population
*
@@ -318,7 +297,6 @@ public class DifferentialEvolution implements InterfaceOptimizer, java.io.Serial
* @return AbstractEAIndividual
*/
public AbstractEAIndividual generateNewIndividual(Population pop, int parentIndex) {
-// int firstParentIndex;
AbstractEAIndividual indy;
InterfaceDataTypeDouble esIndy;
@@ -342,7 +320,7 @@ public class DifferentialEvolution implements InterfaceOptimizer, java.io.Serial
oX = esIndy.getDoubleData();
vX = oX.clone();
nX = new double[oX.length];
- switch (this.m_DEType) {
+ switch (this.DEType) {
case DE1_Rand_1: {
// this is DE1 or DE/rand/1
double[] delta = this.fetchDeltaRandom(pop);
@@ -462,25 +440,25 @@ public class DifferentialEvolution implements InterfaceOptimizer, java.io.Serial
private double getCurrentK() {
if (randomizeFKLambda) {
- return RNG.randomDouble(m_k * 0.8, m_k * 1.2);
+ return RNG.randomDouble(crossoverRate * 0.8, crossoverRate * 1.2);
} else {
- return m_k;
+ return crossoverRate;
}
}
private double getCurrentLambda() {
if (randomizeFKLambda) {
- return RNG.randomDouble(m_Lambda * 0.8, m_Lambda * 1.2);
+ return RNG.randomDouble(lambda * 0.8, lambda * 1.2);
} else {
- return m_Lambda;
+ return lambda;
}
}
private double getCurrentF() {
if (randomizeFKLambda) {
- return RNG.randomDouble(m_F * 0.8, m_F * 1.2);
+ return RNG.randomDouble(differentialWeight * 0.8, differentialWeight * 1.2);
} else {
- return m_F;
+ return differentialWeight;
}
}
@@ -524,72 +502,69 @@ public class DifferentialEvolution implements InterfaceOptimizer, java.io.Serial
* However it may be easier to parallelize.
*/
public void optimizeGenerational() {
-// AbstractEAIndividual indy = null, orig;
int parentIndex;
- // required for dynamic problems especially
-// problem.evaluatePopulationStart(m_Population);
if (children == null) {
- children = new Population(m_Population.size());
+ children = new Population(population.size());
} else {
children.clear();
}
- for (int i = 0; i < this.m_Population.size(); i++) {
+ for (int i = 0; i < this.population.size(); i++) {
if (cyclePop) {
parentIndex = i;
} else {
- parentIndex = RNG.randomInt(0, this.m_Population.size() - 1);
+ parentIndex = RNG.randomInt(0, this.population.size() - 1);
}
- AbstractEAIndividual indy = generateNewIndividual(m_Population, parentIndex);
+ AbstractEAIndividual indy = generateNewIndividual(population, parentIndex);
children.add(indy);
}
- children.setGenerationTo(m_Population.getGeneration());
- m_Problem.evaluate(children);
+ children.setGeneration(population.getGeneration());
+ optimizationProblem.evaluate(children);
/**
* MdP: added a reevalutation mechanism for dynamically changing
* problems
*/
if (isReEvaluate()) {
- for (int i = 0; i < this.m_Population.size(); i++) {
+ for (int i = 0; i < this.population.size(); i++) {
- if (((AbstractEAIndividual) m_Population.get(i)).getAge() >= maximumAge) {
- this.m_Problem.evaluate(((AbstractEAIndividual) m_Population.get(i)));
- ((AbstractEAIndividual) m_Population.get(i)).SetAge(0);
- m_Population.incrFunctionCalls();
+ if (((AbstractEAIndividual) population.get(i)).getAge() >= maximumAge) {
+ this.optimizationProblem.evaluate(((AbstractEAIndividual) population.get(i)));
+ ((AbstractEAIndividual) population.get(i)).SetAge(0);
+ population.incrFunctionCalls();
}
}
}
- int nextDoomed = getNextDoomed(m_Population, 0);
- for (int i = 0; i < this.m_Population.size(); i++) {
+ int nextDoomed = getNextDoomed(population, 0);
+ for (int i = 0; i < this.population.size(); i++) {
AbstractEAIndividual indy = children.getEAIndividual(i);
if (cyclePop) {
parentIndex = i;
} else {
- parentIndex = RNG.randomInt(0, this.m_Population.size() - 1);
+ parentIndex = RNG.randomInt(0, this.population.size() - 1);
}
if (nextDoomed >= 0) { // this one is lucky, may replace an 'old' one
- m_Population.replaceIndividualAt(nextDoomed, indy);
- nextDoomed = getNextDoomed(m_Population, nextDoomed + 1);
+ population.replaceIndividualAt(nextDoomed, indy);
+ nextDoomed = getNextDoomed(population, nextDoomed + 1);
} else {
- if (m_Problem instanceof AbstractMultiObjectiveOptimizationProblem & indy.getFitness().length > 1) {
+ if (optimizationProblem instanceof AbstractMultiObjectiveOptimizationProblem & indy.getFitness().length > 1) {
ReplacementCrowding repl = new ReplacementCrowding();
- repl.insertIndividual(indy, m_Population, null);
+ repl.insertIndividual(indy, population, null);
} else {
-// index = RNG.randomInt(0, this.m_Population.size()-1);
+// index = RNG.randomInt(0, this.population.size()-1);
if (!compareToParent) {
- parentIndex = RNG.randomInt(0, this.m_Population.size() - 1);
+ parentIndex = RNG.randomInt(0, this.population.size() - 1);
}
- AbstractEAIndividual orig = (AbstractEAIndividual) this.m_Population.get(parentIndex);
+ AbstractEAIndividual orig = (AbstractEAIndividual) this.population.get(parentIndex);
if (indy.isDominatingDebConstraints(orig)) {
- this.m_Population.replaceIndividualAt(parentIndex, indy);
+ this.population.replaceIndividualAt(parentIndex, indy);
}
}
}
}
- this.m_Population.incrFunctionCallsBy(children.size());
- this.m_Population.incrGeneration();
+ this.population.incrFunctionCallsBy(children.size());
+ this.population.incrGeneration();
this.firePropertyChangedEvent(Population.NEXT_GENERATION_PERFORMED);
}
@@ -597,10 +572,10 @@ public class DifferentialEvolution implements InterfaceOptimizer, java.io.Serial
AbstractEAIndividual indy = null, orig;
int index;
- int nextDoomed = getNextDoomed(m_Population, 0);
+ int nextDoomed = getNextDoomed(population, 0);
// required for dynamic problems especially
- m_Problem.evaluatePopulationStart(m_Population);
+ optimizationProblem.evaluatePopulationStart(population);
/**
@@ -609,96 +584,52 @@ public class DifferentialEvolution implements InterfaceOptimizer, java.io.Serial
*/
if (isReEvaluate()) {
nextDoomed = -1;
- for (int i = 0; i < this.m_Population.size(); i++) {
+ for (int i = 0; i < this.population.size(); i++) {
- if (((AbstractEAIndividual) m_Population.get(i)).getAge() >= maximumAge) {
- this.m_Problem.evaluate(((AbstractEAIndividual) m_Population.get(i)));
- ((AbstractEAIndividual) m_Population.get(i)).SetAge(0);
- m_Population.incrFunctionCalls();
+ if (((AbstractEAIndividual) population.get(i)).getAge() >= maximumAge) {
+ this.optimizationProblem.evaluate(((AbstractEAIndividual) population.get(i)));
+ ((AbstractEAIndividual) population.get(i)).SetAge(0);
+ population.incrFunctionCalls();
}
}
}
- for (int i = 0; i < this.m_Population.size(); i++) {
+ for (int i = 0; i < this.population.size(); i++) {
if (cyclePop) {
index = i;
} else {
- index = RNG.randomInt(0, this.m_Population.size() - 1);
+ index = RNG.randomInt(0, this.population.size() - 1);
}
- indy = generateNewIndividual(m_Population, index);
-// if (cyclePop) indy = this.generateNewIndividual(this.m_Population, i);
-// else indy = this.generateNewIndividual(this.m_Population, -1);
- this.m_Problem.evaluate(indy);
- this.m_Population.incrFunctionCalls();
+ indy = generateNewIndividual(population, index);
+ this.optimizationProblem.evaluate(indy);
+ this.population.incrFunctionCalls();
if (nextDoomed >= 0) { // this one is lucky, may replace an 'old' one
- m_Population.replaceIndividualAt(nextDoomed, indy);
- nextDoomed = getNextDoomed(m_Population, nextDoomed + 1);
+ population.replaceIndividualAt(nextDoomed, indy);
+ nextDoomed = getNextDoomed(population, nextDoomed + 1);
} else {
- if (m_Problem instanceof AbstractMultiObjectiveOptimizationProblem) {
+ if (optimizationProblem instanceof AbstractMultiObjectiveOptimizationProblem) {
- if (indy.isDominatingDebConstraints(m_Population.getEAIndividual(index))) { //child dominates the parent replace the parent
- m_Population.replaceIndividualAt(index, indy);
- } else if (!(m_Population.getEAIndividual(index).isDominatingDebConstraints(indy))) { //do nothing if parent dominates the child use crowding if neither one dominates the other one
+ if (indy.isDominatingDebConstraints(population.getEAIndividual(index))) { //child dominates the parent replace the parent
+ population.replaceIndividualAt(index, indy);
+ } else if (!(population.getEAIndividual(index).isDominatingDebConstraints(indy))) { //do nothing if parent dominates the child use crowding if neither one dominates the other one
ReplacementNondominatedSortingDistanceCrowding repl = new ReplacementNondominatedSortingDistanceCrowding();
- repl.insertIndividual(indy, m_Population, null);
+ repl.insertIndividual(indy, population, null);
}
- // ReplacementCrowding repl = new ReplacementCrowding();
- // repl.insertIndividual(indy, m_Population, null);
-
-
} else {
-// index = RNG.randomInt(0, this.m_Population.size()-1);
if (!compareToParent) {
- index = RNG.randomInt(0, this.m_Population.size() - 1);
+ index = RNG.randomInt(0, this.population.size() - 1);
}
- orig = (AbstractEAIndividual) this.m_Population.get(index);
+ orig = (AbstractEAIndividual) this.population.get(index);
if (indy.isDominatingDebConstraints(orig)) {
- this.m_Population.replaceIndividualAt(index, indy);
+ this.population.replaceIndividualAt(index, indy);
}
}
}
}
-//////// this was a non-steady-state-version
-// if (children==null) children = new Population(m_Population.size());
-// for (int i = 0; i < this.m_Population.size(); i++) {
-// indy = this.generateNewIndividual(this.m_Population);
-// this.problem.evaluate(indy);
-// this.m_Population.incrFunctionCalls();
-// children.add(indy);
-// }
-// int nextDoomed = getNextDoomed(m_Population, 0);
-//
-// for (int i=0; i= 0) { // kid is lucky, it may replace an 'old' individual
-// m_Population.replaceIndividualAt(nextDoomed, indy);
-// nextDoomed = getNextDoomed(m_Population, nextDoomed+1);
-// } else { // duel with random one
-// index = RNG.randomInt(0, this.m_Population.size()-1);
-// org = (AbstractEAIndividual)this.m_Population.get(index);
-// // if (envHasChanged) this.problem.evaluate(org);
-// if (indy.isDominatingDebConstraints(org)) {
-// this.m_Population.replaceIndividualAt(index, indy);
-// }
-// }
-// }
-// children.clear();
-//////// this was the original version
-// for (int i = 0; i < this.m_Population.size(); i++) {
-// indy = this.generateNewIndividual(this.m_Population);
-// this.problem.evaluate(indy);
-// this.m_Population.incrFunctionCalls();
-// index = RNG.randomInt(0, this.m_Population.size()-1);
-// org = (AbstractEAIndividual)this.m_Population.get(index);
-// if (indy.isDominatingDebConstraints(org)) {
-// this.m_Population.remove(index);
-// this.m_Population.add(index, indy);
-// }
-// }
- m_Problem.evaluatePopulationEnd(m_Population);
- this.m_Population.incrGeneration();
+ optimizationProblem.evaluatePopulationEnd(population);
+ this.population.incrGeneration();
this.firePropertyChangedEvent(Population.NEXT_GENERATION_PERFORMED);
}
@@ -767,12 +698,12 @@ public class DifferentialEvolution implements InterfaceOptimizer, java.io.Serial
*/
@Override
public void setProblem(InterfaceOptimizationProblem problem) {
- this.m_Problem = (AbstractOptimizationProblem) problem;
+ this.optimizationProblem = (AbstractOptimizationProblem) problem;
}
@Override
public InterfaceOptimizationProblem getProblem() {
- return (InterfaceOptimizationProblem) this.m_Problem;
+ return (InterfaceOptimizationProblem) this.optimizationProblem;
}
/**
@@ -786,8 +717,8 @@ public class DifferentialEvolution implements InterfaceOptimizer, java.io.Serial
String result = "";
result += "Differential Evolution:\n";
result += "Optimization Problem: ";
- result += this.m_Problem.getStringRepresentationForProblem(this) + "\n";
- result += this.m_Population.getStringRepresentation();
+ result += this.optimizationProblem.getStringRepresentationForProblem(this) + "\n";
+ result += this.population.getStringRepresentation();
return result;
}
@@ -838,12 +769,12 @@ public class DifferentialEvolution implements InterfaceOptimizer, java.io.Serial
*/
@Override
public Population getPopulation() {
- return this.m_Population;
+ return this.population;
}
@Override
public void setPopulation(Population pop) {
- this.m_Population = pop;
+ this.population = pop;
}
public String populationTipText() {
@@ -862,15 +793,15 @@ public class DifferentialEvolution implements InterfaceOptimizer, java.io.Serial
*
* @param f
*/
- public void setF(double f) {
- this.m_F = f;
+ public void setDifferentialWeight(double f) {
+ this.differentialWeight = f;
}
- public double getF() {
- return this.m_F;
+ public double getDifferentialWeight() {
+ return this.differentialWeight;
}
- public String fTipText() {
+ public String differentialWeightTipText() {
return "F is a real and constant factor which controls the amplification of the differential variation.";
}
@@ -880,21 +811,21 @@ public class DifferentialEvolution implements InterfaceOptimizer, java.io.Serial
*
* @param k
*/
- public void setK(double k) {
+ public void setCrossoverRate(double k) {
if (k < 0) {
k = 0;
}
if (k > 1) {
k = 1;
}
- this.m_k = k;
+ this.crossoverRate = k;
}
- public double getK() {
- return this.m_k;
+ public double getCrossoverRate() {
+ return this.crossoverRate;
}
- public String kTipText() {
+ public String crossoverrateTipText() {
return "Probability of alteration through DE (a.k.a. CR, similar to discrete uniform crossover).";
}
@@ -905,11 +836,11 @@ public class DifferentialEvolution implements InterfaceOptimizer, java.io.Serial
* @param l
*/
public void setLambda(double l) {
- this.m_Lambda = l;
+ this.lambda = l;
}
public double getLambda() {
- return this.m_Lambda;
+ return this.lambda;
}
public String lambdaTipText() {
@@ -945,14 +876,14 @@ public class DifferentialEvolution implements InterfaceOptimizer, java.io.Serial
* @param s The type.
*/
public void setDEType(DETypeEnum s) {
- this.m_DEType = s;
+ this.DEType = s;
// show mt for trig. DE only
GenericObjectEditor.setShowProperty(this.getClass(), "lambda", s == DETypeEnum.DE2_CurrentToBest);
GenericObjectEditor.setShowProperty(this.getClass(), "mt", s == DETypeEnum.TrigonometricDE);
}
public DETypeEnum getDEType() {
- return this.m_DEType;
+ return this.DEType;
}
public String dETypeTipText() {
@@ -1009,17 +940,6 @@ public class DifferentialEvolution implements InterfaceOptimizer, java.io.Serial
return "If true, values for k, f, lambda are randomly sampled around +/- 20% of the given values.";
}
- // public boolean isCyclePop() {
-// return cyclePop;
-// }
-//
-// public void setCyclePop(boolean cyclePop) {
-// this.cyclePop = cyclePop;
-// }
-//
-// public String cyclePopTipText() {
-// return "Use all individuals as parents in cyclic sequence instead of randomly.";
-// }
public boolean isCompareToParent() {
return compareToParent;
}
@@ -1071,6 +991,6 @@ public class DifferentialEvolution implements InterfaceOptimizer, java.io.Serial
}
public String reEvaluateTipText() {
- return "Reeavulates individuals which are older than maximum age instead of discarding them";
+ return "Re-evaluates individuals which are older than maximum age instead of discarding them";
}
}
\ No newline at end of file
diff --git a/src/eva2/optimization/strategies/EvolutionStrategyIPOP.java b/src/eva2/optimization/strategies/EvolutionStrategyIPOP.java
index e04a230c..d3b14357 100644
--- a/src/eva2/optimization/strategies/EvolutionStrategyIPOP.java
+++ b/src/eva2/optimization/strategies/EvolutionStrategyIPOP.java
@@ -88,7 +88,7 @@ public class EvolutionStrategyIPOP extends EvolutionStrategies implements Interf
// // first perform the environment selection to select myu parents
// parents = selectParents();
//
-// // m_Population / parents are of sizes lambda / mu
+// // population / parents are of sizes lambda / mu
// if (parents.getEAIndividual(0).getMutationOperator() instanceof InterfaceMutationGenerational) {
// ((InterfaceMutationGenerational)parents.getEAIndividual(0).getMutationOperator()).adaptAfterSelection(getPopulation(), parents);
// }
diff --git a/src/eva2/optimization/strategies/HillClimbing.java b/src/eva2/optimization/strategies/HillClimbing.java
index 389da065..d7acaea5 100644
--- a/src/eva2/optimization/strategies/HillClimbing.java
+++ b/src/eva2/optimization/strategies/HillClimbing.java
@@ -92,7 +92,7 @@ public class HillClimbing implements InterfaceOptimizer, java.io.Serializable {
this.m_Problem.evaluate(this.m_Population);
for (int i = 0; i < this.m_Population.size(); i++) {
if (((AbstractEAIndividual) original.get(i)).isDominatingDebConstraints(((AbstractEAIndividual) this.m_Population.get(i)))) {
-// this.m_Population.remove(i);
+// this.population.remove(i);
// throw away mutated one and replace by old one
this.m_Population.set(i, original.get(i));
} else {
@@ -100,20 +100,20 @@ public class HillClimbing implements InterfaceOptimizer, java.io.Serializable {
}
}
this.m_Population.incrGeneration();
-// for (int i = 0; i < this.m_Population.size(); i++) {
-// indy1 = (AbstractEAIndividual) this.m_Population.get(i);
+// for (int i = 0; i < this.population.size(); i++) {
+// indy1 = (AbstractEAIndividual) this.population.get(i);
// indy2 = (AbstractEAIndividual)(indy1).clone();
// indy2.mutate();
// this.problem.evaluate((AbstractEAIndividual) indy2);
// //indy2.SetFitness(0, indy2.evaulateAsMiniBits());
-// this.m_Population.incrFunctionCalls();
+// this.population.incrFunctionCalls();
// //if (indy2.getFitness(0) < indy1.getFitness(0)) {
// if (indy2.isDominating(indy1)) {
-// this.m_Population.remove(i);
-// this.m_Population.add(i, indy2);
+// this.population.remove(i);
+// this.population.add(i, indy2);
// }
// }
-// this.m_Population.incrGeneration();
+// this.population.incrGeneration();
this.firePropertyChangedEvent(Population.NEXT_GENERATION_PERFORMED);
}
diff --git a/src/eva2/optimization/strategies/IslandModelEA.java b/src/eva2/optimization/strategies/IslandModelEA.java
index e2d54c88..a29f8c92 100644
--- a/src/eva2/optimization/strategies/IslandModelEA.java
+++ b/src/eva2/optimization/strategies/IslandModelEA.java
@@ -88,7 +88,7 @@ public class IslandModelEA implements InterfacePopulationChangedEventListener, I
}
}
-// this.m_Population = new Population();
+// this.population = new Population();
this.m_Population.clear();
this.m_Population.init();
this.m_Optimizer.init();
@@ -284,7 +284,7 @@ public class IslandModelEA implements InterfacePopulationChangedEventListener, I
this.m_Population.addPopulation(pop);
this.m_Population.incrFunctionCallsBy(pop.getFunctionCalls());
}
-// System.out.println("Fitnesscalls :" + this.m_Population.getFunctionCalls());
+// System.out.println("Fitnesscalls :" + this.population.getFunctionCalls());
this.firePropertyChangedEvent(Population.NEXT_GENERATION_PERFORMED, this.m_Optimizer.getPopulation());
double plotValue = (this.m_Problem.getDoublePlotValue(this.m_Population)).doubleValue();
if (this.m_Show) {
@@ -366,7 +366,7 @@ public class IslandModelEA implements InterfacePopulationChangedEventListener, I
}
//result += "=> The Optimization Problem: ";
//result += this.problem.getStringRepresentationForProblem(this) +"\n";
- //result += this.m_Population.getStringRepresentation();
+ //result += this.population.getStringRepresentation();
return result;
}
diff --git a/src/eva2/optimization/strategies/MemeticAlgorithm.java b/src/eva2/optimization/strategies/MemeticAlgorithm.java
index d1c2935d..fbc41e9c 100644
--- a/src/eva2/optimization/strategies/MemeticAlgorithm.java
+++ b/src/eva2/optimization/strategies/MemeticAlgorithm.java
@@ -46,7 +46,7 @@ public class MemeticAlgorithm implements InterfaceOptimizer,
}
public MemeticAlgorithm(MemeticAlgorithm a) {
- // this.m_Population = (Population)a.m_Population.clone();
+ // this.population = (Population)a.population.clone();
this.m_Problem = (InterfaceLocalSearchable) a.m_Problem.clone();
this.m_GlobalOptimizer = (InterfaceOptimizer) a.m_GlobalOptimizer;
this.selectorPlug = (InterfaceSelection) a.selectorPlug;
diff --git a/src/eva2/optimization/strategies/MonteCarloSearch.java b/src/eva2/optimization/strategies/MonteCarloSearch.java
index 3acad87b..fc9c8390 100644
--- a/src/eva2/optimization/strategies/MonteCarloSearch.java
+++ b/src/eva2/optimization/strategies/MonteCarloSearch.java
@@ -88,7 +88,7 @@ public class MonteCarloSearch implements InterfaceOptimizer, java.io.Serializabl
public void optimize() {
Population original = (Population) this.m_Population.clone();
-// this.problem.initializePopulation(this.m_Population);
+// this.problem.initializePopulation(this.population);
for (int i = 0; i < m_Population.size(); i++) {
m_Population.getEAIndividual(i).defaultInit(null);
}
diff --git a/src/eva2/optimization/strategies/MultiObjectiveCMAES.java b/src/eva2/optimization/strategies/MultiObjectiveCMAES.java
index ce88eb1b..0528de7b 100644
--- a/src/eva2/optimization/strategies/MultiObjectiveCMAES.java
+++ b/src/eva2/optimization/strategies/MultiObjectiveCMAES.java
@@ -178,10 +178,10 @@ public class MultiObjectiveCMAES implements InterfaceOptimizer, Serializable {
*/
@Override
public void init() {
- // initByPopulation(m_Population, true);
+ // initByPopulation(population, true);
this.m_Population.setTargetSize(m_lambdamo);
this.m_Problem.initializePopulation(this.m_Population);
- // children = new Population(m_Population.size());
+ // children = new Population(population.size());
this.evaluatePopulation(this.m_Population);
this.firePropertyChangedEvent(Population.NEXT_GENERATION_PERFORMED);
diff --git a/src/eva2/optimization/strategies/MultiObjectiveEA.java b/src/eva2/optimization/strategies/MultiObjectiveEA.java
index 4473d0db..85ac6051 100644
--- a/src/eva2/optimization/strategies/MultiObjectiveEA.java
+++ b/src/eva2/optimization/strategies/MultiObjectiveEA.java
@@ -211,7 +211,7 @@ public class MultiObjectiveEA implements InterfaceOptimizer, java.io.Serializabl
result += this.m_Optimizer.getStringRepresentation() + "\n";
//result += "=> The Optimization Problem: ";
//result += this.problem.getStringRepresentationForProblem(this) +"\n";
- //result += this.m_Population.getStringRepresentation();
+ //result += this.population.getStringRepresentation();
return result;
}
diff --git a/src/eva2/optimization/strategies/NelderMeadSimplex.java b/src/eva2/optimization/strategies/NelderMeadSimplex.java
index 6546e185..48f28461 100644
--- a/src/eva2/optimization/strategies/NelderMeadSimplex.java
+++ b/src/eva2/optimization/strategies/NelderMeadSimplex.java
@@ -296,7 +296,7 @@ public class NelderMeadSimplex implements InterfaceOptimizer, Serializable, Inte
// Mathematics.projectToRange(x, range);
// ((InterfaceDataTypeDouble)ind).setDoubleGenotype(x);
// problem.evaluate(ind);
-// this.m_Population.incrFunctionCalls();
+// this.population.incrFunctionCalls();
}
m_Population.set(m_Population.getIndexOfWorstIndividualNoConstr(fitIndex), ind, fitIndex);
} else {//keine Verbesserung gefunden shrink!!
@@ -309,7 +309,7 @@ public class NelderMeadSimplex implements InterfaceOptimizer, Serializable, Inte
c[i] = 0.5 * c[i] + 0.5 * u_1[i];
}
((InterfaceDataTypeDouble) m_Population.getEAIndividual(j)).setDoubleGenotype(c);
-// m_Population.getEAIndividual(j).resetConstraintViolation(); // not a good idea because during evaluation, a stats update may be performed which mustnt see indies which are evaluated, but possible constraints have been reset.
+// population.getEAIndividual(j).resetConstraintViolation(); // not a good idea because during evaluation, a stats update may be performed which mustnt see indies which are evaluated, but possible constraints have been reset.
}
m_Problem.evaluate(m_Population);
}
diff --git a/src/eva2/optimization/strategies/ParticleFilterOptimization.java b/src/eva2/optimization/strategies/ParticleFilterOptimization.java
index 597ab5bd..fe379f5f 100644
--- a/src/eva2/optimization/strategies/ParticleFilterOptimization.java
+++ b/src/eva2/optimization/strategies/ParticleFilterOptimization.java
@@ -96,8 +96,8 @@ public class ParticleFilterOptimization implements InterfaceOptimizer, java.io.S
@Override
public void init() {
- //System.out.println("popsize is " + m_Population.size());
- //System.out.println("pops targ is " + m_Population.getPopulationSize());
+ //System.out.println("popsize is " + population.size());
+ //System.out.println("pops targ is " + population.getPopulationSize());
if (initialVelocity <= 0.) {
(((AbstractOptimizationProblem) m_Problem).getIndividualTemplate()).setMutationOperator(new MutateESFixedStepSize(mutationSigma));
@@ -264,7 +264,7 @@ public class ParticleFilterOptimization implements InterfaceOptimizer, java.io.S
m_Population = evaluatePopulation(nextGeneration);
-// collectStatistics(m_Population);
+// collectStatistics(population);
this.firePropertyChangedEvent(Population.NEXT_GENERATION_PERFORMED);
diff --git a/src/eva2/optimization/strategies/ParticleSwarmOptimization.java b/src/eva2/optimization/strategies/ParticleSwarmOptimization.java
index bfcdd4be..2c730344 100644
--- a/src/eva2/optimization/strategies/ParticleSwarmOptimization.java
+++ b/src/eva2/optimization/strategies/ParticleSwarmOptimization.java
@@ -698,7 +698,7 @@ public class ParticleSwarmOptimization implements InterfaceOptimizer, java.io.Se
// if (index != 0) return;
// double[] bestPosition = (double[])m_BestIndividual.getData(partBestPosKey);
-// double[] localBestPos = findNeighbourhoodOptimum(index, m_Population);
+// double[] localBestPos = findNeighbourhoodOptimum(index, population);
// this.m_Plot.setConnectedPoint(curPosition[0], curPosition[1], index+1);
// this.m_Plot.setConnectedPoint(curPosition[0] + curVelocity[0], curPosition[1] + curVelocity[1], index+1);
// this.m_Plot.setConnectedPoint(curPosition[0], curPosition[1], index+2);
@@ -1355,7 +1355,7 @@ public class ParticleSwarmOptimization implements InterfaceOptimizer, java.io.Se
@Override
public void optimize() {
-// System.out.println(">>> " + m_Population.getStringRepresentation());
+// System.out.println(">>> " + population.getStringRepresentation());
startOptimize();
// Update the individuals
@@ -1370,12 +1370,12 @@ public class ParticleSwarmOptimization implements InterfaceOptimizer, java.io.Se
// log the best individual of the population
logBestIndividual();
-// System.out.println("<<< " + m_Population.getStringRepresentation());
+// System.out.println("<<< " + population.getStringRepresentation());
-// if (doLocalSearch && (m_Population.getGeneration()%localSearchGens==0)) {
-//// System.out.println("Local search at gen "+m_Population.getGeneration());
-// Population bestN = m_Population.getBestNIndividuals(Math.max(1,(int)(lsCandidateRatio*m_Population.size())));
-//// Population bestN = m_Population.getSortedNIndividuals(Math.max(1,(int)(lsCandidateRatio*m_Population.size())), false);
+// if (doLocalSearch && (population.getGeneration()%localSearchGens==0)) {
+//// System.out.println("Local search at gen "+population.getGeneration());
+// Population bestN = population.getBestNIndividuals(Math.max(1,(int)(lsCandidateRatio*population.size())));
+//// Population bestN = population.getSortedNIndividuals(Math.max(1,(int)(lsCandidateRatio*population.size())), false);
// Population cands=(Population)bestN.clone();
// int maxSteps=cands.size()*lsStepsPerInd;
// int stepsDone = PostProcess.processSingleCandidates(PostProcessMethod.nelderMead, cands, maxSteps, 0.01, (AbstractOptimizationProblem)this.problem, null);
@@ -1388,8 +1388,8 @@ public class ParticleSwarmOptimization implements InterfaceOptimizer, java.io.Se
// }
// if (stepsDone>maxSteps) {
//// System.err.println("Warning: more steps performed than alloed in PSO LS: " + stepsDone + " vs. " + maxSteps);
-// m_Population.incrFunctionCallsBy(stepsDone);
-// } else m_Population.incrFunctionCallsBy(maxSteps);
+// population.incrFunctionCallsBy(stepsDone);
+// } else population.incrFunctionCallsBy(maxSteps);
// }
this.firePropertyChangedEvent(Population.NEXT_GENERATION_PERFORMED);
@@ -1554,10 +1554,10 @@ public class ParticleSwarmOptimization implements InterfaceOptimizer, java.io.Se
// }
// for (int i=0; i