removed classpath
This commit is contained in:
parent
0ec063bcff
commit
e12ab22e31
@ -1,6 +0,0 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<classpath>
|
||||
<classpathentry kind="src" path="src"/>
|
||||
<classpathentry kind="con" path="org.eclipse.jdt.launching.JRE_CONTAINER"/>
|
||||
<classpathentry kind="output" path="build"/>
|
||||
</classpath>
|
@ -23,8 +23,10 @@ public class Mathematics {
|
||||
* @return
|
||||
*/
|
||||
public static double[][] adjoint(double[][] a) {
|
||||
if (a == null) return null;
|
||||
if (a.length != a[0].length) return null;
|
||||
if (a == null)
|
||||
return null;
|
||||
if (a.length != a[0].length)
|
||||
return null;
|
||||
double[][] b = new double[a.length][a.length];
|
||||
for (int i = 0; i < a.length; i++)
|
||||
for (int j = 0; j < a.length; j++)
|
||||
@ -52,9 +54,12 @@ public class Mathematics {
|
||||
* is not square).
|
||||
*/
|
||||
public static double determinant(double[][] matrix) {
|
||||
if (matrix == null) return 0;
|
||||
if (matrix.length != matrix[0].length) return 0;
|
||||
if (matrix.length == 1) return matrix[0][0];
|
||||
if (matrix == null)
|
||||
return 0;
|
||||
if (matrix.length != matrix[0].length)
|
||||
return 0;
|
||||
if (matrix.length == 1)
|
||||
return matrix[0][0];
|
||||
if (matrix.length == 2)
|
||||
return matrix[0][0] * matrix[1][1] - matrix[0][1] * matrix[1][0];
|
||||
if (matrix.length == 3)
|
||||
@ -66,7 +71,8 @@ public class Mathematics {
|
||||
|
||||
double det = 0;
|
||||
for (int k = 0; k < matrix.length; k++) {
|
||||
if (matrix[0][k] != 0) det += matrix[0][k] * adjoint(matrix, 0, k);
|
||||
if (matrix[0][k] != 0)
|
||||
det += matrix[0][k] * adjoint(matrix, 0, k);
|
||||
}
|
||||
return det;
|
||||
}
|
||||
@ -83,13 +89,14 @@ public class Mathematics {
|
||||
* what kind of distance funktion
|
||||
* @return the distance of x and y
|
||||
* @throws Exception
|
||||
* if x and y have different dimensions an exception is
|
||||
* thrown.
|
||||
* if x and y have different dimensions an exception is thrown.
|
||||
*/
|
||||
public static double dist(double[] x, double[] y, int root) {
|
||||
if (x.length != y.length)
|
||||
throw new RuntimeException("The vectors x and y must have the same dimension");
|
||||
if (root == 0) throw new RuntimeException("There is no 0-root!");
|
||||
throw new RuntimeException(
|
||||
"The vectors x and y must have the same dimension");
|
||||
if (root == 0)
|
||||
throw new RuntimeException("There is no 0-root!");
|
||||
double d = 0;
|
||||
for (int i = 0; i < x.length; i++)
|
||||
d += Math.pow(Math.abs(x[i] - y[i]), root);
|
||||
@ -107,12 +114,12 @@ public class Mathematics {
|
||||
* what kind of distance funktion
|
||||
* @return the distance of x and y
|
||||
* @throws Exception
|
||||
* if x and y have different dimensions an exception is
|
||||
* thrown.
|
||||
* if x and y have different dimensions an exception is thrown.
|
||||
*/
|
||||
public static double euclidianDist(double[] x, double[] y) {
|
||||
if (x.length != y.length)
|
||||
throw new RuntimeException("The vectors x and y must have the same dimension");
|
||||
throw new RuntimeException(
|
||||
"The vectors x and y must have the same dimension");
|
||||
double d = 0;
|
||||
for (int i = 0; i < x.length; i++)
|
||||
d += Math.pow(Math.abs(x[i] - y[i]), 2);
|
||||
@ -120,8 +127,8 @@ public class Mathematics {
|
||||
}
|
||||
|
||||
/**
|
||||
* Expand a vector to a higher dimension (len) by filling it up
|
||||
* with a constant value.
|
||||
* Expand a vector to a higher dimension (len) by filling it up with a
|
||||
* constant value.
|
||||
*
|
||||
* @param x
|
||||
* @param len
|
||||
@ -130,12 +137,14 @@ public class Mathematics {
|
||||
*/
|
||||
public static double[] expandVector(double[] x, int len, double v) {
|
||||
if (len <= x.length) {// not really an error, just perform identity
|
||||
// System.err.println("Error, invalid length in expandVector, expecting l>" + x.length);
|
||||
// System.err.println("Error, invalid length in expandVector, expecting l>"
|
||||
// + x.length);
|
||||
return x;
|
||||
} else {
|
||||
double[] expanded = new double[len];
|
||||
System.arraycopy(x, 0, expanded, 0, x.length);
|
||||
for (int i=x.length; i<expanded.length; i++) expanded[i] = v;
|
||||
for (int i = x.length; i < expanded.length; i++)
|
||||
expanded[i] = v;
|
||||
return expanded;
|
||||
}
|
||||
}
|
||||
@ -190,15 +199,18 @@ public class Mathematics {
|
||||
*/
|
||||
public static double getAvgRange(double[][] range) {
|
||||
double sum = 0.;
|
||||
for (int i=0; i<range.length; i++) sum+=(range[i][1]-range[i][0]);
|
||||
for (int i = 0; i < range.length; i++)
|
||||
sum += (range[i][1] - range[i][0]);
|
||||
return sum / range.length;
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculates the norm of the given vector relative to the problem range.
|
||||
*
|
||||
* @param vector a double vector within the range
|
||||
* @param range the range in each dimension
|
||||
* @param vector
|
||||
* a double vector within the range
|
||||
* @param range
|
||||
* the range in each dimension
|
||||
* @return measure of the length relative to the problem range
|
||||
*/
|
||||
public static double getRelativeLength(double[] vector, double[][] range) {
|
||||
@ -221,7 +233,8 @@ public class Mathematics {
|
||||
* @param j
|
||||
* @param w
|
||||
*/
|
||||
public static void getRotationEntriesSingleAxis(Matrix tmp, int i, int j, double w) {
|
||||
public static void getRotationEntriesSingleAxis(Matrix tmp, int i, int j,
|
||||
double w) {
|
||||
double cosw = Math.cos(w);
|
||||
double sinw = Math.sin(w);
|
||||
tmp.set(i, i, cosw);
|
||||
@ -250,21 +263,28 @@ public class Mathematics {
|
||||
}
|
||||
|
||||
/**
|
||||
* Return a matrix A which performs the rotation of vec to (1,0,0,...0) if forward is true, else
|
||||
* return a matrix B which performs the reverted rotation, where B=A' (transposition).
|
||||
* Return a matrix A which performs the rotation of vec to (1,0,0,...0) if
|
||||
* forward is true, else return a matrix B which performs the reverted
|
||||
* rotation, where B=A' (transposition).
|
||||
*
|
||||
* @param vec
|
||||
* @return
|
||||
*/
|
||||
public static Matrix getRotationMatrix(Matrix vec) {
|
||||
Matrix A = Matrix.identity(vec.getRowDimension(), vec.getRowDimension());
|
||||
Matrix tmp = Matrix.identity(vec.getRowDimension(), vec.getRowDimension());
|
||||
Matrix A = Matrix
|
||||
.identity(vec.getRowDimension(), vec.getRowDimension());
|
||||
Matrix tmp = Matrix.identity(vec.getRowDimension(), vec
|
||||
.getRowDimension());
|
||||
Matrix z = (Matrix) vec.clone();
|
||||
|
||||
z.multi(1. / z.norm2()); // normalize
|
||||
|
||||
for (int i = 1; i < vec.getRowDimension(); i++) {
|
||||
double w = Math.atan2(z.get(i,0), z.get(0,0));// calc angle between the projection of x and x0 in x0-xi-plane
|
||||
double w = Math.atan2(z.get(i, 0), z.get(0, 0));// calc angle
|
||||
// between the
|
||||
// projection of x
|
||||
// and x0 in
|
||||
// x0-xi-plane
|
||||
// System.out.println("deg: "+(w/Math.PI)*180);
|
||||
|
||||
// make partial rotation matrix
|
||||
@ -281,8 +301,11 @@ public class Mathematics {
|
||||
|
||||
/**
|
||||
* This method return a vector from a to b
|
||||
* @param a first vector
|
||||
* @param b second vectors
|
||||
*
|
||||
* @param a
|
||||
* first vector
|
||||
* @param b
|
||||
* second vectors
|
||||
* @return the vector from a to b
|
||||
*/
|
||||
public static double[] getVectorFromTo(double[] a, double[] b) {
|
||||
@ -299,11 +322,13 @@ public class Mathematics {
|
||||
* @param f1
|
||||
* @return
|
||||
*/
|
||||
public static double hyperbolicInterpolation(double x, double x0, double x1,
|
||||
double f0, double f1) {
|
||||
if (x1 == 0) return lerp(f0, f1, (x - x0) / (-x0));
|
||||
public static double hyperbolicInterpolation(double x, double x0,
|
||||
double x1, double f0, double f1) {
|
||||
if (x1 == 0)
|
||||
return lerp(f0, f1, (x - x0) / (-x0));
|
||||
double l = lerp(x0 / x1, 1, x);
|
||||
if (l == 0) return linearInterpolation(x, x0, x1, f0, f1);
|
||||
if (l == 0)
|
||||
return linearInterpolation(x, x0, x1, f0, f1);
|
||||
return lerp(f0, f1, x / l);
|
||||
}
|
||||
|
||||
@ -314,7 +339,8 @@ public class Mathematics {
|
||||
* @param makeRange
|
||||
* @param destRange
|
||||
*/
|
||||
public static void intersectRange(double[][] r1, double[][] r2, double[][] destRange) {
|
||||
public static void intersectRange(double[][] r1, double[][] r2,
|
||||
double[][] destRange) {
|
||||
for (int i = 0; i < r1.length && i < r2.length; i++) {
|
||||
destRange[i][0] = Math.max(r1[i][0], r2[i][0]);
|
||||
destRange[i][1] = Math.min(r1[i][1], r2[i][1]);
|
||||
@ -329,11 +355,14 @@ public class Mathematics {
|
||||
* @return
|
||||
*/
|
||||
public static double[][] inverse(double[][] a) {
|
||||
if (a == null) return null;
|
||||
if (a.length != a[0].length) return null;
|
||||
if (a == null)
|
||||
return null;
|
||||
if (a.length != a[0].length)
|
||||
return null;
|
||||
double det = determinant(a);
|
||||
|
||||
if (det == 0) return null;
|
||||
if (det == 0)
|
||||
return null;
|
||||
double[][] b = adjoint(a);
|
||||
for (int i = 0; i < a.length; i++)
|
||||
for (int j = 0; j < a.length; j++)
|
||||
@ -342,14 +371,16 @@ public class Mathematics {
|
||||
}
|
||||
|
||||
/**
|
||||
* Check whether the given value lies within the interval in every dimension.
|
||||
* Check whether the given value lies within the interval in every
|
||||
* dimension.
|
||||
*
|
||||
* @param x
|
||||
* @param range
|
||||
* @return true if the vector lies within the range, else false
|
||||
*/
|
||||
public static boolean isInRange(double v, double lower, double upper) {
|
||||
if (v<lower || (v>upper)) return false;
|
||||
if (v < lower || (v > upper))
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
@ -362,25 +393,30 @@ public class Mathematics {
|
||||
*/
|
||||
public static boolean isInRange(double[] x, double[][] range) {
|
||||
for (int i = 0; i < x.length; i++) {
|
||||
if (x[i]<range[i][0] || (x[i]>range[i][1])) return false;
|
||||
if (x[i] < range[i][0] || (x[i] > range[i][1]))
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns false if a vector contains NaN, its squared sum is NaN
|
||||
* or the absolute sum is smaller than 10^-18.
|
||||
* Returns false if a vector contains NaN, its squared sum is NaN or the
|
||||
* absolute sum is smaller than 10^-18.
|
||||
*
|
||||
* @param d
|
||||
* @return
|
||||
*/
|
||||
public static boolean isValidVec(double[] d) {
|
||||
double sum = 0;
|
||||
for (int i = 0; i < d.length; i++) {
|
||||
if (Double.isNaN(d[i])) return false;
|
||||
if (Double.isNaN(d[i]))
|
||||
return false;
|
||||
sum += Math.pow(d[i], 2);
|
||||
}
|
||||
if (Double.isNaN(sum)) return false;
|
||||
if (Math.abs(sum) < 0.000000000000000001) return false;
|
||||
if (Double.isNaN(sum))
|
||||
return false;
|
||||
if (Math.abs(sum) < 0.000000000000000001)
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
@ -412,20 +448,23 @@ public class Mathematics {
|
||||
*/
|
||||
public static double linearInterpolation(double x, double x0, double x1,
|
||||
double f0, double f1) {
|
||||
if (x1 == x0) return f0;
|
||||
if (x1 == x0)
|
||||
return f0;
|
||||
return lerp(f0, f1, (x - x0) / (x1 - x0));
|
||||
}
|
||||
|
||||
public static double max(double[] vals) {
|
||||
double maxVal = vals[0];
|
||||
for (int i=1; i<vals.length; i++) maxVal = Math.max(maxVal, vals[i]);
|
||||
for (int i = 1; i < vals.length; i++)
|
||||
maxVal = Math.max(maxVal, vals[i]);
|
||||
return maxVal;
|
||||
}
|
||||
|
||||
/**
|
||||
* Computes the mean for an array of doubles.
|
||||
*
|
||||
* @param vector the array
|
||||
* @param vector
|
||||
* the array
|
||||
* @return the mean
|
||||
*/
|
||||
public static double mean(double[] vector) {
|
||||
@ -435,8 +474,11 @@ public class Mathematics {
|
||||
return sum(vector) / (double) vector.length;
|
||||
}
|
||||
|
||||
/** This method returns a mean vector from a whole array of vectors.
|
||||
* @param d d[i] the vectors, d[i][j] the jth coordinate of the ith vector
|
||||
/**
|
||||
* This method returns a mean vector from a whole array of vectors.
|
||||
*
|
||||
* @param d
|
||||
* d[i] the vectors, d[i][j] the jth coordinate of the ith vector
|
||||
* @return The mean vector.
|
||||
*/
|
||||
public static double[] meanVect(double[][] d) {
|
||||
@ -455,40 +497,57 @@ public class Mathematics {
|
||||
/**
|
||||
* Computes the median of a given double vector by sorting x.
|
||||
*
|
||||
* @param x a vector of doubles
|
||||
* @param cloneX flag whether x should be cloned before sorting.
|
||||
* @param x
|
||||
* a vector of doubles
|
||||
* @param cloneX
|
||||
* flag whether x should be cloned before sorting.
|
||||
* @return the median
|
||||
*/
|
||||
public static double median(double[] x, boolean cloneX) {
|
||||
double[] in;
|
||||
if (cloneX) in = (double[]) x.clone();
|
||||
else in = x;
|
||||
if (cloneX)
|
||||
in = (double[]) x.clone();
|
||||
else
|
||||
in = x;
|
||||
|
||||
if (in.length==1) return in[0];
|
||||
else if (in.length==2) return (in[0]+in[1])/2.;
|
||||
if (in.length == 1)
|
||||
return in[0];
|
||||
else if (in.length == 2)
|
||||
return (in[0] + in[1]) / 2.;
|
||||
else {
|
||||
Arrays.sort(in);
|
||||
if (in.length % 2 != 0) return in[(in.length-1) / 2];
|
||||
else return (in[in.length/2] + in[(in.length/2)+1]) / 2.;
|
||||
if (in.length % 2 != 0)
|
||||
return in[(in.length - 1) / 2];
|
||||
else
|
||||
return (in[in.length / 2] + in[(in.length / 2) + 1]) / 2.;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Computes the median of a given list of double vectors by sorting it.
|
||||
* If the size is even, no direct median is defined - in that case it may be
|
||||
* interpolated by the two closest elements or one of them may be selected (always
|
||||
* the smaller one depending on the comparator.
|
||||
* Computes the median of a given list of double vectors by sorting it. If
|
||||
* the size is even, no direct median is defined - in that case it may be
|
||||
* interpolated by the two closest elements or one of them may be selected
|
||||
* (always the smaller one depending on the comparator.
|
||||
*
|
||||
* @see #DoubleArrayComparator
|
||||
* @param dblArrList a list of double vectors
|
||||
* @param interpolate flag whether, for even size, the median is interpolated
|
||||
* @param dblArrList
|
||||
* a list of double vectors
|
||||
* @param interpolate
|
||||
* flag whether, for even size, the median is interpolated
|
||||
* @return the median
|
||||
*/
|
||||
public static double[] median(List<double[]> dblArrList, boolean interpolate) {
|
||||
java.util.Collections.sort(dblArrList, new DoubleArrayComparator()); // by default, the comparator uses pareto dominance
|
||||
java.util.Collections.sort(dblArrList, new DoubleArrayComparator()); // by
|
||||
// default,
|
||||
// the
|
||||
// comparator
|
||||
// uses
|
||||
// pareto
|
||||
// dominance
|
||||
|
||||
int len = dblArrList.size();
|
||||
if (len % 2 != 0) return dblArrList.get((len-1) / 2);
|
||||
if (len % 2 != 0)
|
||||
return dblArrList.get((len - 1) / 2);
|
||||
else {
|
||||
double[] med = dblArrList.get(len / 2).clone();
|
||||
if (interpolate) {
|
||||
@ -501,14 +560,16 @@ public class Mathematics {
|
||||
|
||||
public static double min(double[] vals) {
|
||||
double minVal = vals[0];
|
||||
for (int i=1; i<vals.length; i++) minVal = Math.min(minVal, vals[i]);
|
||||
for (int i = 1; i < vals.length; i++)
|
||||
minVal = Math.min(minVal, vals[i]);
|
||||
return minVal;
|
||||
}
|
||||
|
||||
/**
|
||||
* Computes the 2-norm of an array of doubles.
|
||||
*
|
||||
* @param doubles the array of double
|
||||
* @param doubles
|
||||
* the array of double
|
||||
* @return the 2-norm of the elements
|
||||
*/
|
||||
public static double norm(double[] d) {
|
||||
@ -520,10 +581,13 @@ public class Mathematics {
|
||||
}
|
||||
|
||||
/**
|
||||
* Normalizes the doubles in the array by their sum,
|
||||
* so that they add up to one.
|
||||
* @param doubles the array of double
|
||||
* @exception IllegalArgumentException if sum is Zero or NaN
|
||||
* Normalizes the doubles in the array by their sum, so that they add up to
|
||||
* one.
|
||||
*
|
||||
* @param doubles
|
||||
* the array of double
|
||||
* @exception IllegalArgumentException
|
||||
* if sum is Zero or NaN
|
||||
*/
|
||||
public static double[] normalizeSum(double[] v) {
|
||||
double[] res = new double[v.length];
|
||||
@ -532,11 +596,13 @@ public class Mathematics {
|
||||
}
|
||||
|
||||
/**
|
||||
* Normalizes the doubles in the array by their sum,
|
||||
* so that they add up to one.
|
||||
* Normalizes the doubles in the array by their sum, so that they add up to
|
||||
* one.
|
||||
*
|
||||
* @param doubles the array of double
|
||||
* @exception IllegalArgumentException if sum is Zero or NaN
|
||||
* @param doubles
|
||||
* the array of double
|
||||
* @exception IllegalArgumentException
|
||||
* if sum is Zero or NaN
|
||||
*/
|
||||
public static void normalizeSum(double[] v, double[] res) {
|
||||
svMult(1. / sum(v), v, res);
|
||||
@ -564,6 +630,7 @@ public class Mathematics {
|
||||
|
||||
/**
|
||||
* Return the product over a double vector.
|
||||
*
|
||||
* @param vals
|
||||
* @return
|
||||
*/
|
||||
@ -576,7 +643,8 @@ public class Mathematics {
|
||||
}
|
||||
|
||||
// /**
|
||||
// * Normalizes the doubles in the array using the given value so that they sum up to 1.
|
||||
// * Normalizes the doubles in the array using the given value so that they
|
||||
// sum up to 1.
|
||||
// *
|
||||
// * @param doubles the array of double
|
||||
// * @param sum the value by which the doubles are to be normalized
|
||||
@ -588,17 +656,18 @@ public class Mathematics {
|
||||
// }
|
||||
// if (sum == 0) {
|
||||
// // Maybe this should just be a return.
|
||||
// throw new IllegalArgumentException("Can't normalize array. Sum is zero.");
|
||||
// throw new
|
||||
// IllegalArgumentException("Can't normalize array. Sum is zero.");
|
||||
// }
|
||||
// svMult(1/sum, v, res);
|
||||
// }
|
||||
|
||||
/**
|
||||
* Project the values in x to the range given. The range must be an vector of 2d-arrays
|
||||
* each of which containing lower and upper bound in the i-th dimension.
|
||||
* x must not be longer than the available ranges.
|
||||
* Values exceeding the bounds are set on the bound.
|
||||
* The number of bound violations is returned.
|
||||
* Project the values in x to the range given. The range must be an vector
|
||||
* of 2d-arrays each of which containing lower and upper bound in the i-th
|
||||
* dimension. x must not be longer than the available ranges. Values
|
||||
* exceeding the bounds are set on the bound. The number of bound violations
|
||||
* is returned.
|
||||
*
|
||||
* @param x
|
||||
* @param range
|
||||
@ -606,7 +675,9 @@ public class Mathematics {
|
||||
*/
|
||||
public static int projectToRange(double[] x, double[][] range) {
|
||||
int viols = 0;
|
||||
if (x.length>range.length) System.err.println("Invalid vector length, x is longer than range! (Mathematics.projectToRange)");
|
||||
if (x.length > range.length)
|
||||
System.err
|
||||
.println("Invalid vector length, x is longer than range! (Mathematics.projectToRange)");
|
||||
for (int i = 0; i < x.length; i++) {
|
||||
if (x[i] < range[i][0]) {
|
||||
viols++;
|
||||
@ -632,15 +703,18 @@ public class Mathematics {
|
||||
return min;
|
||||
} else if (v > max) {
|
||||
return max;
|
||||
} else return v;
|
||||
} else
|
||||
return v;
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a random vector, the components will be set to gaussian distributed
|
||||
* values with mean zero and the given standard deviation.
|
||||
* Create a random vector, the components will be set to gaussian
|
||||
* distributed values with mean zero and the given standard deviation.
|
||||
*
|
||||
* @param dim the desired dimension
|
||||
* @param stdDev the gaussian standard deviation
|
||||
* @param dim
|
||||
* the desired dimension
|
||||
* @param stdDev
|
||||
* the gaussian standard deviation
|
||||
* @return random vector
|
||||
*/
|
||||
public static double[] randomVector(int dim, double stdDev) {
|
||||
@ -665,17 +739,22 @@ public class Mathematics {
|
||||
for (int i = 0; i < x.length; i++) {
|
||||
double dimLen = range[i][1] - range[i][0];
|
||||
if (dimLen <= 0.) {
|
||||
EVAERROR.errorMsgOnce("Error in reflectBounds: empty range! (possibly multiple errors)");
|
||||
EVAERROR
|
||||
.errorMsgOnce("Error in reflectBounds: empty range! (possibly multiple errors)");
|
||||
} else {
|
||||
if (x[i] < range[i][0]) {
|
||||
viols++;
|
||||
d = range[i][0] - x[i];
|
||||
while (d > dimLen) d -= dimLen; // avoid violating the other bound immediately
|
||||
while (d > dimLen)
|
||||
d -= dimLen; // avoid violating the other bound
|
||||
// immediately
|
||||
x[i] = range[i][0] + d;
|
||||
} else if (x[i] > range[i][1]) {
|
||||
viols++;
|
||||
d = x[i] - range[i][1];
|
||||
while (d>dimLen) d -= dimLen; // avoid violating the other bound immediately
|
||||
while (d > dimLen)
|
||||
d -= dimLen; // avoid violating the other bound
|
||||
// immediately
|
||||
x[i] = range[i][1] - d;
|
||||
}
|
||||
}
|
||||
@ -684,8 +763,8 @@ public class Mathematics {
|
||||
}
|
||||
|
||||
/**
|
||||
* Simple version of reflection of a value moving by a step and bouncing
|
||||
* of min and max values like a pool ball. Precondition is min <= val <= max,
|
||||
* Simple version of reflection of a value moving by a step and bouncing of
|
||||
* min and max values like a pool ball. Precondition is min <= val <= max,
|
||||
* post condition is min <= retVal <= max.
|
||||
*
|
||||
* @param val
|
||||
@ -694,8 +773,10 @@ public class Mathematics {
|
||||
* @param max
|
||||
* @return
|
||||
*/
|
||||
public static double reflectValue(double val, double step, double min, double max) {
|
||||
while (step > (max-min)) step -= (max-min);
|
||||
public static double reflectValue(double val, double step, double min,
|
||||
double max) {
|
||||
while (step > (max - min))
|
||||
step -= (max - min);
|
||||
if ((val + step) > max)
|
||||
return (2 * max - val - step);
|
||||
if ((val + step) < min)
|
||||
@ -721,12 +802,14 @@ public class Mathematics {
|
||||
public static double relDist(double[] x, double[] y, double def)
|
||||
throws Exception {
|
||||
if (x.length != y.length)
|
||||
throw new Exception("The vectors x and y must have the same dimension");
|
||||
throw new Exception(
|
||||
"The vectors x and y must have the same dimension");
|
||||
double d = 0;
|
||||
for (int i = 0; i < x.length; i++)
|
||||
if (y[i] != 0)
|
||||
d += Math.pow(((x[i] - y[i]) / y[i]), 2);
|
||||
else d += def;
|
||||
else
|
||||
d += def;
|
||||
return d;
|
||||
}
|
||||
|
||||
@ -745,7 +828,8 @@ public class Mathematics {
|
||||
for (int i = 0; i < src.length; i++) {
|
||||
dst[src.length - i - 1] = src[i];
|
||||
}
|
||||
} else System.err.println("Mismatching array lengths!");
|
||||
} else
|
||||
System.err.println("Mismatching array lengths!");
|
||||
}
|
||||
|
||||
/**
|
||||
@ -764,8 +848,8 @@ public class Mathematics {
|
||||
}
|
||||
|
||||
/**
|
||||
* Rotate a given double vector using a rotation matrix. If the matrix
|
||||
* is null, x will be returned unchanged. Matrix dimensions must fit.
|
||||
* Rotate a given double vector using a rotation matrix. If the matrix is
|
||||
* null, x will be returned unchanged. Matrix dimensions must fit.
|
||||
*
|
||||
* @param x
|
||||
* @param rotMatrix
|
||||
@ -776,7 +860,8 @@ public class Mathematics {
|
||||
Matrix resVec = rotMatrix.times(new Matrix(x, x.length));
|
||||
x = resVec.getColumnPackedCopy();
|
||||
return x;
|
||||
} else return x;
|
||||
} else
|
||||
return x;
|
||||
}
|
||||
|
||||
/**
|
||||
@ -787,11 +872,14 @@ public class Mathematics {
|
||||
* @param alpha
|
||||
* @param randomize
|
||||
*/
|
||||
public static void rotateAllAxes(double[] vect, double alpha, boolean randomize) {
|
||||
public static void rotateAllAxes(double[] vect, double alpha,
|
||||
boolean randomize) {
|
||||
for (int i = 0; i < vect.length - 1; i++) {
|
||||
for (int j = i + 1; j < vect.length; j++) {
|
||||
if (randomize) rotate(vect, RNG.randomDouble(-alpha,alpha), i, j);
|
||||
else rotate(vect, alpha, i, j);
|
||||
if (randomize)
|
||||
rotate(vect, RNG.randomDouble(-alpha, alpha), i, j);
|
||||
else
|
||||
rotate(vect, alpha, i, j);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -811,8 +899,9 @@ public class Mathematics {
|
||||
}
|
||||
|
||||
/**
|
||||
* Scale a range by the given factor, meaning that the interval in each dimension is
|
||||
* extended (fact>1) or reduced (fact<1) by the defined ratio around the center.
|
||||
* Scale a range by the given factor, meaning that the interval in each
|
||||
* dimension is extended (fact>1) or reduced (fact<1) by the defined ratio
|
||||
* around the center.
|
||||
*
|
||||
* @param rangeScaleFact
|
||||
* @param range
|
||||
@ -820,7 +909,10 @@ public class Mathematics {
|
||||
public static void scaleRange(double rangeScaleFact, double[][] range) {
|
||||
double[] intervalLengths = Mathematics.getAbsRange(range);
|
||||
double[] tmpInts = Mathematics.svMult(rangeScaleFact, intervalLengths);
|
||||
Mathematics.vvSub(tmpInts, intervalLengths, tmpInts); // this is what must be added to range interval
|
||||
Mathematics.vvSub(tmpInts, intervalLengths, tmpInts); // this is what
|
||||
// must be added
|
||||
// to range
|
||||
// interval
|
||||
for (int i = 0; i < range.length; i++) {
|
||||
range[i][0] -= tmpInts[i] / 2;
|
||||
range[i][1] += tmpInts[i] / 2;
|
||||
@ -840,8 +932,8 @@ public class Mathematics {
|
||||
}
|
||||
|
||||
/**
|
||||
* Shift bounds by a constant value in every dimension. The dists
|
||||
* must be of dimensions as the range.
|
||||
* Shift bounds by a constant value in every dimension. The dists must be of
|
||||
* dimensions as the range.
|
||||
*
|
||||
* @param range
|
||||
* @return
|
||||
@ -861,10 +953,12 @@ public class Mathematics {
|
||||
// * @param x1
|
||||
// * @param f0
|
||||
// * @param f1
|
||||
// * @return If an error with the spline occurs, a linear interpolation will be
|
||||
// * @return If an error with the spline occurs, a linear interpolation will
|
||||
// be
|
||||
// * returned.
|
||||
// */
|
||||
// /* public static double splineInterpolation(double x, double x0, double x1,
|
||||
// /* public static double splineInterpolation(double x, double x0, double
|
||||
// x1,
|
||||
// double f0, double f1) {
|
||||
// try {
|
||||
// double[] t = { x0, x1 }, f = { f0, f1 };
|
||||
@ -885,15 +979,15 @@ public class Mathematics {
|
||||
* @param x1
|
||||
* @param f0
|
||||
* @param f1
|
||||
* @return If an error with the spline occurs, a linear interpolation will be
|
||||
* returned.
|
||||
* @return If an error with the spline occurs, a linear interpolation will
|
||||
* be returned.
|
||||
*/
|
||||
public static double splineInterpolation(double x, double x0, double x1,
|
||||
double f0, double f1) {
|
||||
try {
|
||||
double[] t = { x0, x1 }, f = { f0, f1 };
|
||||
SplineInterpolation spline = new SplineInterpolation(new BasicDataSet(t,
|
||||
f, 1));
|
||||
SplineInterpolation spline = new SplineInterpolation(
|
||||
new BasicDataSet(t, f, 1));
|
||||
return spline.getY(x);
|
||||
} catch (InterpolationException e) {
|
||||
e.printStackTrace();
|
||||
@ -915,9 +1009,11 @@ public class Mathematics {
|
||||
int i, j, m = 0, n = 0;
|
||||
|
||||
for (i = 0; i < a.length; i++) {
|
||||
if (i == k) continue;
|
||||
if (i == k)
|
||||
continue;
|
||||
for (j = 0; j < a[0].length; j++) {
|
||||
if (j == l) continue;
|
||||
if (j == l)
|
||||
continue;
|
||||
b[m][n++] = a[i][j];
|
||||
}
|
||||
m++;
|
||||
@ -930,7 +1026,8 @@ public class Mathematics {
|
||||
/**
|
||||
* Computes the sum of the elements of an array of doubles.
|
||||
*
|
||||
* @param doubles the array of double
|
||||
* @param doubles
|
||||
* the array of double
|
||||
* @return the sum of the elements
|
||||
*/
|
||||
public static double sum(double[] doubles) {
|
||||
@ -944,7 +1041,8 @@ public class Mathematics {
|
||||
/**
|
||||
* Computes the sum of the elements of an array of integers.
|
||||
*
|
||||
* @param ints the array of integers
|
||||
* @param ints
|
||||
* the array of integers
|
||||
* @return the sum of the elements
|
||||
*/
|
||||
public static int sum(int[] ints) {
|
||||
@ -1012,7 +1110,8 @@ public class Mathematics {
|
||||
}
|
||||
|
||||
/**
|
||||
* Multiplies (scales) every element of the array v with s returning a new vector.
|
||||
* Multiplies (scales) every element of the array v with s returning a new
|
||||
* vector.
|
||||
*
|
||||
* @param s
|
||||
* a scalar
|
||||
@ -1028,12 +1127,13 @@ public class Mathematics {
|
||||
return res;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Multiplies (scales) every element of the array v with s in place.
|
||||
*
|
||||
* @param s a scalar
|
||||
* @param v an array to be multiplied with s.
|
||||
* @param s
|
||||
* a scalar
|
||||
* @param v
|
||||
* an array to be multiplied with s.
|
||||
* @return a scaled array.
|
||||
*/
|
||||
public static void svMult(double s, double[] v, double[] res) {
|
||||
@ -1050,7 +1150,8 @@ public class Mathematics {
|
||||
* @param w
|
||||
* @return
|
||||
*/
|
||||
public static void svvAddScaled(double s, double[] v, double[] w, double[] res) {
|
||||
public static void svvAddScaled(double s, double[] v, double[] w,
|
||||
double[] res) {
|
||||
for (int i = 0; i < v.length; i++) {
|
||||
res[i] = s * v[i] + w[i];
|
||||
}
|
||||
@ -1058,6 +1159,7 @@ public class Mathematics {
|
||||
|
||||
/**
|
||||
* Add vectors returning a new vector c = a + b;
|
||||
*
|
||||
* @param a
|
||||
* @param b
|
||||
* @return a new vector c = a + b
|
||||
@ -1097,17 +1199,19 @@ public class Mathematics {
|
||||
}
|
||||
|
||||
/**
|
||||
* Add vectors in place setting with an offset within the target
|
||||
* vector, meaning that res[resOffs+i]=v1[v1Offs+i]+v2[v2Offs+i] for i in length.
|
||||
* Add vectors in place setting with an offset within the target vector,
|
||||
* meaning that res[resOffs+i]=v1[v1Offs+i]+v2[v2Offs+i] for i in length.
|
||||
*
|
||||
* @param v1
|
||||
* @param v2
|
||||
* @return vector addition
|
||||
*/
|
||||
public static void vvAddOffs(double[] v1, int v1Offs, double[] v2, int v2Offs, double[] res, int resOffs, int len) {
|
||||
for (int i = 0; i < len; i++)
|
||||
public static void vvAddOffs(double[] v1, int v1Offs, double[] v2,
|
||||
int v2Offs, double[] res, int resOffs, int len) {
|
||||
for (int i = 0; i < len; i++) {
|
||||
res[resOffs + i] = v1[v1Offs + i] + v2[v2Offs + i];
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Scalar product of two vectors returning sum_i (a_i * b_i).
|
||||
@ -1124,7 +1228,6 @@ public class Mathematics {
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Component wise multiplication of vectors: res[i]=u[i]*v[i]
|
||||
*
|
||||
@ -1166,6 +1269,7 @@ public class Mathematics {
|
||||
|
||||
/**
|
||||
* Return a vector of given length containing zeroes.
|
||||
*
|
||||
* @param n
|
||||
* @return
|
||||
*/
|
||||
@ -1187,4 +1291,16 @@ public class Mathematics {
|
||||
Arrays.fill(ret, d);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/**
|
||||
* Scales a vector with the given scalar.
|
||||
*
|
||||
* @param scale
|
||||
* @param vec
|
||||
*/
|
||||
public static void scale(double scale, double[] vec) {
|
||||
for (double d : vec) {
|
||||
d *= scale;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -18,7 +18,7 @@ import java.io.Serializable;
|
||||
* @version Copyright (c) ZBiT, University of Tübingen, Germany Compiler:
|
||||
* JDK 1.6.0
|
||||
* @date Sep 10, 2007
|
||||
*
|
||||
* @depend - <call> - DESystem
|
||||
*/
|
||||
public interface DESSolver extends Serializable {
|
||||
|
||||
|
@ -12,6 +12,7 @@ import eva2.tools.math.Mathematics;
|
||||
* @author Andreas Dräger
|
||||
* @author Marcel Kronfeld
|
||||
* @version 1.0 Status: works, but numerical inaccurate
|
||||
* @depend - <call> - Mathematics
|
||||
*/
|
||||
public class RKSolver implements DESSolver, Serializable {
|
||||
/**
|
||||
@ -89,109 +90,6 @@ public class RKSolver implements DESSolver, Serializable {
|
||||
return unstableFlag;
|
||||
}
|
||||
|
||||
/**
|
||||
* @param DES
|
||||
* @param h
|
||||
* @param x
|
||||
* @param Ytemp
|
||||
* @return
|
||||
*/
|
||||
public double[] rkTerm(DESystem DES, double h, double x, double[] Ytemp) {
|
||||
double[][] K = new double[4][];
|
||||
K[0] = Mathematics.svMult(h, DES.getValue(x, Ytemp));
|
||||
K[1] = Mathematics.svMult(h, DES.getValue(x + h / 2, Mathematics.vvAdd(
|
||||
Ytemp, Mathematics.svMult(0.5, K[0]))));
|
||||
K[2] = Mathematics.svMult(h, DES.getValue(x + h / 2, Mathematics.vvAdd(
|
||||
Ytemp, Mathematics.svMult(0.5, K[1]))));
|
||||
K[3] = Mathematics.svMult(h, DES.getValue(x + h, Mathematics.vvAdd(
|
||||
Ytemp, K[2])));
|
||||
|
||||
double[] change = Mathematics.svDiv(6, Mathematics.vvAdd(K[0],
|
||||
Mathematics.vvAdd(Mathematics.svMult(2, K[1]), Mathematics
|
||||
.vvAdd(Mathematics.svMult(2, K[2]), K[3]))));
|
||||
for (int k = 0; k < change.length; k++) {
|
||||
if (Double.isNaN(change[k])) {
|
||||
unstableFlag = true;
|
||||
change[k] = 0;
|
||||
// return result;
|
||||
}
|
||||
}
|
||||
return change;
|
||||
}
|
||||
|
||||
/**
|
||||
* Linearized code for speed-up (no allocations).
|
||||
*
|
||||
* @param DES
|
||||
* @param h
|
||||
* @param x
|
||||
* @param Ytemp
|
||||
* @return
|
||||
*/
|
||||
public void rkTerm2(DESystem DES, double h, double x, double[] Ytemp,
|
||||
double[] res) {
|
||||
if (kVals == null) { // "static" vectors which are allocated only once
|
||||
k0tmp = new double[DES.getDESystemDimension()];
|
||||
k1tmp = new double[DES.getDESystemDimension()];
|
||||
k2tmp = new double[DES.getDESystemDimension()];
|
||||
kVals = new double[4][DES.getDESystemDimension()];
|
||||
}
|
||||
|
||||
// double[][] K = new double[4][];
|
||||
DES.getValue(x, Ytemp, kVals[0]);
|
||||
Mathematics.svMult(h, kVals[0], kVals[0]);
|
||||
|
||||
// K[0] = svMult(h, DES.getValue(x, Ytemp));
|
||||
|
||||
Mathematics.svMult(0.5, kVals[0], k0tmp);
|
||||
Mathematics.vvAdd(Ytemp, k0tmp, k0tmp);
|
||||
DES.getValue(x + h / 2, k0tmp, kVals[1]);
|
||||
Mathematics.svMult(h, kVals[1], kVals[1]);
|
||||
|
||||
// K[1] = svMult(h, DES.getValue(x + h / 2, vvAdd(Ytemp, svMult(0.5,
|
||||
// K[0]))));
|
||||
|
||||
Mathematics.svMult(0.5, kVals[1], k1tmp);
|
||||
Mathematics.vvAdd(Ytemp, k1tmp, k1tmp);
|
||||
DES.getValue(x + h / 2, k1tmp, kVals[2]);
|
||||
Mathematics.svMult(h, kVals[2], kVals[2]);
|
||||
|
||||
// K[2] = svMult(h, DES.getValue(x + h / 2, vvAdd(Ytemp, svMult(0.5,
|
||||
// K[1]))));
|
||||
|
||||
Mathematics.vvAdd(Ytemp, kVals[2], k2tmp);
|
||||
DES.getValue(x + h, k2tmp, k1tmp);
|
||||
Mathematics.svMult(h, k1tmp, kVals[3]);
|
||||
|
||||
// K[3] = svMult(h, DES.getValue(x + h, vvAdd(Ytemp, K[2])));
|
||||
|
||||
Mathematics.svMult(2, kVals[2], k0tmp);
|
||||
Mathematics.vvAdd(k0tmp, kVals[3], k0tmp);
|
||||
|
||||
Mathematics.svMult(2, kVals[1], k1tmp);
|
||||
Mathematics.vvAdd(k1tmp, k0tmp, k2tmp);
|
||||
|
||||
Mathematics.vvAdd(kVals[0], k2tmp, k1tmp);
|
||||
Mathematics.svDiv(6, k1tmp, res);
|
||||
|
||||
// double[] change = svDiv(6, vvAdd(K[0], vvAdd(svMult(2, K[1]),
|
||||
// vvAdd(svMult(2, K[2]), K[3]))));
|
||||
// for (int i=0; i<res.length; i++) {
|
||||
// double diff = Math.abs(res[i]-change[i]);
|
||||
// if (diff > 0.00000001) System.out.println("!!! ");
|
||||
// }
|
||||
|
||||
// double[] change = svdiv(6, vvadd(kVals[0], vvadd(svmult(2, kVals[1]),
|
||||
// vvadd(svmult(2, kVals[2]), kVals[3]))));
|
||||
for (int k = 0; k < res.length; k++) {
|
||||
if (Double.isNaN(res[k])) {
|
||||
unstableFlag = true;
|
||||
res[k] = 0;
|
||||
// return result;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @param stepSize
|
||||
*/
|
||||
@ -254,8 +152,9 @@ public class RKSolver implements DESSolver, Serializable {
|
||||
return solveAtTimePoints(DES, initialValues, timePoints, true);
|
||||
}
|
||||
|
||||
/**
|
||||
*
|
||||
/*
|
||||
* (non-Javadoc)
|
||||
* @see eva2.tools.math.des.DESSolver#solveAtTimePointsWithInitialConditions(eva2.tools.math.des.DESystem, double[][], double[])
|
||||
*/
|
||||
public double[][] solveAtTimePointsWithInitialConditions(DESystem DES,
|
||||
double[][] initConditions, double[] timePoints) {
|
||||
@ -319,6 +218,109 @@ public class RKSolver implements DESSolver, Serializable {
|
||||
return solveByStepSize(DES, initialValues, timeBegin, timeEnd, true);
|
||||
}
|
||||
|
||||
/**
|
||||
* @param DES
|
||||
* @param h
|
||||
* @param x
|
||||
* @param Ytemp
|
||||
* @return
|
||||
*/
|
||||
private double[] rkTerm(DESystem DES, double h, double x, double[] Ytemp) {
|
||||
double[][] K = new double[4][];
|
||||
K[0] = Mathematics.svMult(h, DES.getValue(x, Ytemp));
|
||||
K[1] = Mathematics.svMult(h, DES.getValue(x + h / 2, Mathematics.vvAdd(
|
||||
Ytemp, Mathematics.svMult(0.5, K[0]))));
|
||||
K[2] = Mathematics.svMult(h, DES.getValue(x + h / 2, Mathematics.vvAdd(
|
||||
Ytemp, Mathematics.svMult(0.5, K[1]))));
|
||||
K[3] = Mathematics.svMult(h, DES.getValue(x + h, Mathematics.vvAdd(
|
||||
Ytemp, K[2])));
|
||||
|
||||
double[] change = Mathematics.svDiv(6, Mathematics.vvAdd(K[0],
|
||||
Mathematics.vvAdd(Mathematics.svMult(2, K[1]), Mathematics
|
||||
.vvAdd(Mathematics.svMult(2, K[2]), K[3]))));
|
||||
for (int k = 0; k < change.length; k++) {
|
||||
if (Double.isNaN(change[k])) {
|
||||
unstableFlag = true;
|
||||
change[k] = 0;
|
||||
// return result;
|
||||
}
|
||||
}
|
||||
return change;
|
||||
}
|
||||
|
||||
/**
|
||||
* Linearized code for speed-up (no allocations).
|
||||
*
|
||||
* @param DES
|
||||
* @param h
|
||||
* @param x
|
||||
* @param Ytemp
|
||||
* @return
|
||||
*/
|
||||
private void rkTerm2(DESystem DES, double h, double x, double[] Ytemp,
|
||||
double[] res) {
|
||||
if (kVals == null) { // "static" vectors which are allocated only once
|
||||
k0tmp = new double[DES.getDESystemDimension()];
|
||||
k1tmp = new double[DES.getDESystemDimension()];
|
||||
k2tmp = new double[DES.getDESystemDimension()];
|
||||
kVals = new double[4][DES.getDESystemDimension()];
|
||||
}
|
||||
|
||||
// double[][] K = new double[4][];
|
||||
DES.getValue(x, Ytemp, kVals[0]);
|
||||
Mathematics.svMult(h, kVals[0], kVals[0]);
|
||||
|
||||
// K[0] = svMult(h, DES.getValue(x, Ytemp));
|
||||
|
||||
Mathematics.svMult(0.5, kVals[0], k0tmp);
|
||||
Mathematics.vvAdd(Ytemp, k0tmp, k0tmp);
|
||||
DES.getValue(x + h / 2, k0tmp, kVals[1]);
|
||||
Mathematics.svMult(h, kVals[1], kVals[1]);
|
||||
|
||||
// K[1] = svMult(h, DES.getValue(x + h / 2, vvAdd(Ytemp, svMult(0.5,
|
||||
// K[0]))));
|
||||
|
||||
Mathematics.svMult(0.5, kVals[1], k1tmp);
|
||||
Mathematics.vvAdd(Ytemp, k1tmp, k1tmp);
|
||||
DES.getValue(x + h / 2, k1tmp, kVals[2]);
|
||||
Mathematics.svMult(h, kVals[2], kVals[2]);
|
||||
|
||||
// K[2] = svMult(h, DES.getValue(x + h / 2, vvAdd(Ytemp, svMult(0.5,
|
||||
// K[1]))));
|
||||
|
||||
Mathematics.vvAdd(Ytemp, kVals[2], k2tmp);
|
||||
DES.getValue(x + h, k2tmp, k1tmp);
|
||||
Mathematics.svMult(h, k1tmp, kVals[3]);
|
||||
|
||||
// K[3] = svMult(h, DES.getValue(x + h, vvAdd(Ytemp, K[2])));
|
||||
|
||||
Mathematics.svMult(2, kVals[2], k0tmp);
|
||||
Mathematics.vvAdd(k0tmp, kVals[3], k0tmp);
|
||||
|
||||
Mathematics.svMult(2, kVals[1], k1tmp);
|
||||
Mathematics.vvAdd(k1tmp, k0tmp, k2tmp);
|
||||
|
||||
Mathematics.vvAdd(kVals[0], k2tmp, k1tmp);
|
||||
Mathematics.svDiv(6, k1tmp, res);
|
||||
|
||||
// double[] change = svDiv(6, vvAdd(K[0], vvAdd(svMult(2, K[1]),
|
||||
// vvAdd(svMult(2, K[2]), K[3]))));
|
||||
// for (int i=0; i<res.length; i++) {
|
||||
// double diff = Math.abs(res[i]-change[i]);
|
||||
// if (diff > 0.00000001) System.out.println("!!! ");
|
||||
// }
|
||||
|
||||
// double[] change = svdiv(6, vvadd(kVals[0], vvadd(svmult(2, kVals[1]),
|
||||
// vvadd(svmult(2, kVals[2]), kVals[3]))));
|
||||
for (int k = 0; k < res.length; k++) {
|
||||
if (Double.isNaN(res[k])) {
|
||||
unstableFlag = true;
|
||||
res[k] = 0;
|
||||
// return result;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* When set to <code>TRUE</code>, <code>includeTimes</code> will make the
|
||||
* solver to return a matrix with the first column containing the times. By
|
||||
|
Loading…
x
Reference in New Issue
Block a user