Renamed init to initialize.
Added @Parameter annotation to EAIndividual
This commit is contained in:
parent
d0268527b0
commit
ee73f5dbe5
@ -14,6 +14,7 @@ import eva2.problems.InterfaceOptimizationProblem;
|
||||
import eva2.tools.EVAERROR;
|
||||
import eva2.tools.math.RNG;
|
||||
import eva2.util.annotation.Hidden;
|
||||
import eva2.util.annotation.Parameter;
|
||||
|
||||
import java.util.*;
|
||||
|
||||
@ -275,7 +276,7 @@ public abstract class AbstractEAIndividual implements IndividualInterface, java.
|
||||
*
|
||||
* @param opt The optimization problem that is to be solved.
|
||||
*/
|
||||
public void init(InterfaceOptimizationProblem opt) {
|
||||
public void initialize(InterfaceOptimizationProblem opt) {
|
||||
initializationOperator.initialize(this, opt);
|
||||
this.mutationOperator.initialize(this, opt);
|
||||
this.crossoverOperator.init(this, opt);
|
||||
@ -814,6 +815,7 @@ public abstract class AbstractEAIndividual implements IndividualInterface, java.
|
||||
*
|
||||
* @param mutator The mutation operator.
|
||||
*/
|
||||
@Parameter(name = "mutator", description = "The mutation operator to use.")
|
||||
public void setMutationOperator(InterfaceMutation mutator) {
|
||||
this.mutationOperator = mutator;
|
||||
}
|
||||
@ -822,16 +824,13 @@ public abstract class AbstractEAIndividual implements IndividualInterface, java.
|
||||
return this.mutationOperator;
|
||||
}
|
||||
|
||||
public String mutationOperatorTipText() {
|
||||
return "Choose the mutation operator to use.";
|
||||
}
|
||||
|
||||
/**
|
||||
* This method allows you to set the mutation probability, e.g. the chance
|
||||
* that mutation occurs at all.
|
||||
*
|
||||
* @param mutprob The mutation probability.
|
||||
*/
|
||||
@Parameter(name = "pm", description = "The chance that mutation occurs.")
|
||||
public void setMutationProbability(double mutprob) {
|
||||
if (mutprob < 0) {
|
||||
mutprob = 0;
|
||||
@ -846,16 +845,13 @@ public abstract class AbstractEAIndividual implements IndividualInterface, java.
|
||||
return mutationProbability;
|
||||
}
|
||||
|
||||
public String mutationProbabilityTipText() {
|
||||
return "The chance that mutation occurs.";
|
||||
}
|
||||
|
||||
/**
|
||||
* This method allows you to choose from multiple crossover operators. Note:
|
||||
* If the operator doeesn't suite the data nothing will happen.
|
||||
* If the operator doesn't suite the data nothing will happen.
|
||||
*
|
||||
* @param crossover The crossover operator.
|
||||
*/
|
||||
@Parameter(name = "crossover", description = "The crossover operator.")
|
||||
public void setCrossoverOperator(InterfaceCrossover crossover) {
|
||||
this.crossoverOperator = crossover;
|
||||
}
|
||||
@ -864,15 +860,12 @@ public abstract class AbstractEAIndividual implements IndividualInterface, java.
|
||||
return this.crossoverOperator;
|
||||
}
|
||||
|
||||
public String crossoverOperatorTipText() {
|
||||
return "Choose the crossover operator to use.";
|
||||
}
|
||||
|
||||
/**
|
||||
* This method allows to set the crossover probability
|
||||
*
|
||||
* @param prob
|
||||
*/
|
||||
@Parameter(name = "pc", description = "The crossover rate")
|
||||
public void setCrossoverProbability(double prob) {
|
||||
this.crossoverProbability = prob;
|
||||
if (this.crossoverProbability > 1) {
|
||||
@ -887,22 +880,15 @@ public abstract class AbstractEAIndividual implements IndividualInterface, java.
|
||||
return this.crossoverProbability;
|
||||
}
|
||||
|
||||
public String crossoverProbabilityTipText() {
|
||||
return "The chance that crossover occurs.";
|
||||
}
|
||||
|
||||
public InterfaceInitialization getInitOperator() {
|
||||
return initializationOperator;
|
||||
}
|
||||
|
||||
@Parameter(name = "initop", description = "The initialization method for the individual")
|
||||
public void setInitOperator(InterfaceInitialization mInitOperator) {
|
||||
initializationOperator = mInitOperator;
|
||||
}
|
||||
|
||||
public String initOperatorTipText() {
|
||||
return "An initialization method for the individual";
|
||||
}
|
||||
|
||||
/**
|
||||
* This method allows you to store an arbitrary value under an arbitrary
|
||||
* name.
|
||||
|
@ -244,8 +244,8 @@ public class ESIndividualDoubleData extends AbstractEAIndividual implements Inte
|
||||
* @param opt The optimization problem that is to be solved.
|
||||
*/
|
||||
@Override
|
||||
public void init(InterfaceOptimizationProblem opt) {
|
||||
super.init(opt);
|
||||
public void initialize(InterfaceOptimizationProblem opt) {
|
||||
super.initialize(opt);
|
||||
// evil operators may not respect the range, so at least give some hint
|
||||
if (!Mathematics.isInRange(genotype, range)) {
|
||||
EVAERROR.errorMsgOnce("Warning: Individual out of range after initialization (and potential initial crossover/mutation)!");
|
||||
|
@ -76,9 +76,9 @@ public class GAESIndividualBinaryDoubleData extends AbstractEAIndividual impleme
|
||||
* @param opt The optimization problem that is to be solved.
|
||||
*/
|
||||
@Override
|
||||
public void init(InterfaceOptimizationProblem opt) {
|
||||
((AbstractEAIndividual) this.doubleIndividual).init(opt);
|
||||
((AbstractEAIndividual) this.binaryIndividual).init(opt);
|
||||
public void initialize(InterfaceOptimizationProblem opt) {
|
||||
((AbstractEAIndividual) this.doubleIndividual).initialize(opt);
|
||||
((AbstractEAIndividual) this.binaryIndividual).initialize(opt);
|
||||
}
|
||||
|
||||
@Override
|
||||
@ -105,8 +105,8 @@ public class GAESIndividualBinaryDoubleData extends AbstractEAIndividual impleme
|
||||
((AbstractEAIndividual) this.binaryIndividual).initByValue(((Object[]) obj)[0], opt);
|
||||
}
|
||||
} else {
|
||||
((AbstractEAIndividual) this.doubleIndividual).init(opt);
|
||||
((AbstractEAIndividual) this.binaryIndividual).init(opt);
|
||||
((AbstractEAIndividual) this.doubleIndividual).initialize(opt);
|
||||
((AbstractEAIndividual) this.binaryIndividual).initialize(opt);
|
||||
System.out.println("Initial value for GAESIndividualDoubleData is not suitable!");
|
||||
}
|
||||
}
|
||||
|
@ -72,9 +72,9 @@ public class GAPIndividualProgramData extends AbstractEAIndividual implements In
|
||||
* @param opt The optimization problem that is to be solved.
|
||||
*/
|
||||
@Override
|
||||
public void init(InterfaceOptimizationProblem opt) {
|
||||
((AbstractEAIndividual) this.numberData).init(opt);
|
||||
((AbstractEAIndividual) this.programData).init(opt);
|
||||
public void initialize(InterfaceOptimizationProblem opt) {
|
||||
((AbstractEAIndividual) this.numberData).initialize(opt);
|
||||
((AbstractEAIndividual) this.programData).initialize(opt);
|
||||
}
|
||||
|
||||
@Override
|
||||
@ -101,8 +101,8 @@ public class GAPIndividualProgramData extends AbstractEAIndividual implements In
|
||||
((AbstractEAIndividual) this.programData).initByValue(((Object[]) obj)[0], opt);
|
||||
}
|
||||
} else {
|
||||
((AbstractEAIndividual) this.numberData).init(opt);
|
||||
((AbstractEAIndividual) this.programData).init(opt);
|
||||
((AbstractEAIndividual) this.numberData).initialize(opt);
|
||||
((AbstractEAIndividual) this.programData).initialize(opt);
|
||||
System.out.println("Initial value for GAPIndividualDoubleData is not suitable!");
|
||||
}
|
||||
}
|
||||
|
@ -72,9 +72,9 @@ public class GIOBGAIndividualIntegerPermutationData extends AbstractEAIndividual
|
||||
* @param opt The optimization problem that is to be solved.
|
||||
*/
|
||||
@Override
|
||||
public void init(InterfaceOptimizationProblem opt) {
|
||||
((AbstractEAIndividual) this.integerData).init(opt);
|
||||
((AbstractEAIndividual) this.permutationData).init(opt);
|
||||
public void initialize(InterfaceOptimizationProblem opt) {
|
||||
((AbstractEAIndividual) this.integerData).initialize(opt);
|
||||
((AbstractEAIndividual) this.permutationData).initialize(opt);
|
||||
}
|
||||
|
||||
@Override
|
||||
@ -101,8 +101,8 @@ public class GIOBGAIndividualIntegerPermutationData extends AbstractEAIndividual
|
||||
((AbstractEAIndividual) this.permutationData).initByValue(((Object[]) obj)[0], opt);
|
||||
}
|
||||
} else {
|
||||
((AbstractEAIndividual) this.integerData).init(opt);
|
||||
((AbstractEAIndividual) this.permutationData).init(opt);
|
||||
((AbstractEAIndividual) this.integerData).initialize(opt);
|
||||
((AbstractEAIndividual) this.permutationData).initialize(opt);
|
||||
System.out.println("Initial value for GIOBGAIndividualIntegerPermutationData is not suitable!");
|
||||
}
|
||||
}
|
||||
|
@ -110,12 +110,12 @@ public class TestESCrossover implements java.io.Serializable {
|
||||
tmpIndyD.setDoubleRange(newRange);
|
||||
for (int i = 0; i < partners.getTargetSize(); i++) {
|
||||
tmpIndyEA = (AbstractEAIndividual) ((AbstractEAIndividual) tmpIndyD).clone();
|
||||
tmpIndyEA.init(optimizationProblem);
|
||||
tmpIndyEA.initialize(optimizationProblem);
|
||||
partners.add(tmpIndyEA);
|
||||
}
|
||||
partners.init();
|
||||
daddy = (AbstractEAIndividual) ((AbstractEAIndividual) tmpIndyD).clone();
|
||||
daddy.init(optimizationProblem);
|
||||
daddy.initialize(optimizationProblem);
|
||||
plot.clearAll();
|
||||
plot.setUnconnectedPoint(-2, -2, 0);
|
||||
plot.setUnconnectedPoint(2, 2, 0);
|
||||
|
@ -541,7 +541,7 @@ public class ANPSO extends NichePSO implements InterfaceAdditionalPopulationInfo
|
||||
if (reinitSuperfl) {
|
||||
for (int i = 0; i < tmpPop.size(); i++) {
|
||||
AbstractEAIndividual indy = tmpPop.getEAIndividual(i);
|
||||
indy.init(optimizationProblem);
|
||||
indy.initialize(optimizationProblem);
|
||||
indy.resetFitness(Double.MAX_VALUE); // TODO this is not so nice... they should be collected in a reinit-list and inserted at the beginning of the next optimize step
|
||||
ParticleSwarmOptimization.initIndividualDefaults(indy, 0.2);
|
||||
ParticleSwarmOptimization.initIndividualMemory(indy);
|
||||
|
@ -194,7 +194,7 @@ public class ArtificialBeeColony extends AbstractOptimizer implements Serializab
|
||||
*/
|
||||
AbstractEAIndividual oldestIndy = getOldestIndividual();
|
||||
if (oldestIndy.getAge() > this.maxTrials) {
|
||||
oldestIndy.init(this.optimizationProblem);
|
||||
oldestIndy.initialize(this.optimizationProblem);
|
||||
this.optimizationProblem.evaluate(oldestIndy);
|
||||
this.population.incrFunctionCalls();
|
||||
}
|
||||
|
@ -1,6 +1,5 @@
|
||||
package eva2.optimization.strategies;
|
||||
|
||||
import eva2.optimization.population.InterfacePopulationChangedEventListener;
|
||||
import eva2.optimization.individuals.AbstractEAIndividual;
|
||||
import eva2.optimization.operator.mutation.InterfaceAdaptOperatorGenerational;
|
||||
import eva2.optimization.operator.selection.InterfaceSelection;
|
||||
@ -12,8 +11,6 @@ import eva2.optimization.population.SolutionSet;
|
||||
import eva2.problems.InterfaceOptimizationProblem;
|
||||
import eva2.util.annotation.Description;
|
||||
|
||||
import java.util.Vector;
|
||||
|
||||
/**
|
||||
* The traditional genetic algorithms as devised by Holland. To only special
|
||||
* here it the plague factor which reduces the population size to tune from a
|
||||
@ -28,7 +25,6 @@ public class GeneticAlgorithm extends AbstractOptimizer implements java.io.Seria
|
||||
private boolean useElitism = true;
|
||||
private int plague = 0;
|
||||
private int numberOfPartners = 1;
|
||||
transient private Vector<InterfacePopulationChangedEventListener> changeListener;
|
||||
|
||||
public GeneticAlgorithm() {
|
||||
}
|
||||
@ -153,38 +149,6 @@ public class GeneticAlgorithm extends AbstractOptimizer implements java.io.Seria
|
||||
this.firePropertyChangedEvent(Population.NEXT_GENERATION_PERFORMED);
|
||||
}
|
||||
|
||||
/**
|
||||
* This method allows you to add the LectureGUI as listener to the Optimizer
|
||||
*
|
||||
* @param ea
|
||||
*/
|
||||
@Override
|
||||
public void addPopulationChangedEventListener(InterfacePopulationChangedEventListener ea) {
|
||||
if (this.changeListener == null) {
|
||||
this.changeListener = new Vector<>();
|
||||
}
|
||||
this.changeListener.add(ea);
|
||||
}
|
||||
|
||||
@Override
|
||||
public boolean removePopulationChangedEventListener(
|
||||
InterfacePopulationChangedEventListener ea) {
|
||||
return changeListener != null && changeListener.removeElement(ea);
|
||||
}
|
||||
|
||||
/**
|
||||
* Something has changed
|
||||
*
|
||||
* @param name
|
||||
*/
|
||||
protected void firePropertyChangedEvent(String name) {
|
||||
if (this.changeListener != null) {
|
||||
for (int i = 0; i < this.changeListener.size(); i++) {
|
||||
this.changeListener.get(i).registerPopulationStateChanged(this, name);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@Override
|
||||
public InterfaceOptimizationProblem getProblem() {
|
||||
return this.optimizationProblem;
|
||||
|
@ -146,7 +146,7 @@ public class ParticleFilterOptimization extends AbstractOptimizer implements jav
|
||||
int i;
|
||||
for (i = 0; (i + parents.getTargetSize()) < pop.getTargetSize(); i++) {
|
||||
immi = (AbstractEAIndividual) pop.getEAIndividual(0).clone();
|
||||
immi.init(getProblem());
|
||||
immi.initialize(getProblem());
|
||||
parents.add(immi);
|
||||
}
|
||||
parents.synchSize();
|
||||
|
@ -481,7 +481,7 @@ public class ParticleSubSwarmOptimization extends ParticleSwarmOptimizationGCPSO
|
||||
|
||||
for (int i = 0; i < tmp.getTargetSize(); i++) {
|
||||
tmpIndy = (AbstractEAIndividual) template.clone();
|
||||
tmpIndy.init(prob);
|
||||
tmpIndy.initialize(prob);
|
||||
tmp.add(tmpIndy);
|
||||
}
|
||||
tmp.init();
|
||||
|
@ -954,7 +954,7 @@ v[d] = cmin * v[d];
|
||||
}
|
||||
|
||||
@Override
|
||||
public void init(InterfaceOptimizationProblem opt) {
|
||||
public void initialize(InterfaceOptimizationProblem opt) {
|
||||
// TODO whats this for?
|
||||
for (int i = 0; i < this.position.x.length; i++) {
|
||||
this.position.x[0] = 0.;
|
||||
@ -983,7 +983,7 @@ v[d] = cmin * v[d];
|
||||
}
|
||||
this.setDoubleGenotype(x);
|
||||
} else {
|
||||
this.init(opt);
|
||||
this.initialize(opt);
|
||||
System.err.println("Initial value for ESIndividualDoubleData is not double[]!");
|
||||
}
|
||||
}
|
||||
|
@ -104,7 +104,7 @@ public class ImpactOfDimensionOnMOEAs {
|
||||
((InterfaceDataTypeDouble) template).setDoubleDataLength(numberOfVariables);
|
||||
for (int i = 0; i < popSize; i++) {
|
||||
tmpIndy = (AbstractEAIndividual) template.clone();
|
||||
tmpIndy.init(null);
|
||||
tmpIndy.initialize(null);
|
||||
pop.add(tmpIndy);
|
||||
}
|
||||
}
|
||||
|
@ -57,7 +57,7 @@ public abstract class AbstractMultiModalProblemKnown extends AbstractProblemDoub
|
||||
((InterfaceDataTypeDouble) this.template).setDoubleRange(makeRange());
|
||||
for (int i = 0; i < population.getTargetSize(); i++) {
|
||||
tmpIndy = (AbstractEAIndividual) this.template.clone();
|
||||
tmpIndy.init(this);
|
||||
tmpIndy.initialize(this);
|
||||
population.add(tmpIndy);
|
||||
}
|
||||
// population initialize must be last
|
||||
|
@ -191,7 +191,7 @@ public abstract class AbstractOptimizationProblem implements InterfaceOptimizati
|
||||
|
||||
for (int i = 0; i < population.getTargetSize(); i++) {
|
||||
tmpIndy = (AbstractEAIndividual) template.clone();
|
||||
tmpIndy.init(prob);
|
||||
tmpIndy.initialize(prob);
|
||||
population.add(tmpIndy);
|
||||
}
|
||||
// population initialize must be last
|
||||
|
@ -160,7 +160,7 @@ public class BKnapsackProblem extends AbstractProblemBinary implements java.io.S
|
||||
}
|
||||
|
||||
protected void initIndy(int k, AbstractEAIndividual indy) {
|
||||
indy.init(this);
|
||||
indy.initialize(this);
|
||||
if (RNG.flipCoin(this.problemSpecificInit)) {
|
||||
BitSet tmpSet = new BitSet();
|
||||
tmpSet.clear();
|
||||
|
Loading…
x
Reference in New Issue
Block a user