Renamed init to initialize.
Added @Parameter annotation to EAIndividual
This commit is contained in:
parent
d0268527b0
commit
ee73f5dbe5
@ -14,6 +14,7 @@ import eva2.problems.InterfaceOptimizationProblem;
|
|||||||
import eva2.tools.EVAERROR;
|
import eva2.tools.EVAERROR;
|
||||||
import eva2.tools.math.RNG;
|
import eva2.tools.math.RNG;
|
||||||
import eva2.util.annotation.Hidden;
|
import eva2.util.annotation.Hidden;
|
||||||
|
import eva2.util.annotation.Parameter;
|
||||||
|
|
||||||
import java.util.*;
|
import java.util.*;
|
||||||
|
|
||||||
@ -275,7 +276,7 @@ public abstract class AbstractEAIndividual implements IndividualInterface, java.
|
|||||||
*
|
*
|
||||||
* @param opt The optimization problem that is to be solved.
|
* @param opt The optimization problem that is to be solved.
|
||||||
*/
|
*/
|
||||||
public void init(InterfaceOptimizationProblem opt) {
|
public void initialize(InterfaceOptimizationProblem opt) {
|
||||||
initializationOperator.initialize(this, opt);
|
initializationOperator.initialize(this, opt);
|
||||||
this.mutationOperator.initialize(this, opt);
|
this.mutationOperator.initialize(this, opt);
|
||||||
this.crossoverOperator.init(this, opt);
|
this.crossoverOperator.init(this, opt);
|
||||||
@ -814,6 +815,7 @@ public abstract class AbstractEAIndividual implements IndividualInterface, java.
|
|||||||
*
|
*
|
||||||
* @param mutator The mutation operator.
|
* @param mutator The mutation operator.
|
||||||
*/
|
*/
|
||||||
|
@Parameter(name = "mutator", description = "The mutation operator to use.")
|
||||||
public void setMutationOperator(InterfaceMutation mutator) {
|
public void setMutationOperator(InterfaceMutation mutator) {
|
||||||
this.mutationOperator = mutator;
|
this.mutationOperator = mutator;
|
||||||
}
|
}
|
||||||
@ -822,16 +824,13 @@ public abstract class AbstractEAIndividual implements IndividualInterface, java.
|
|||||||
return this.mutationOperator;
|
return this.mutationOperator;
|
||||||
}
|
}
|
||||||
|
|
||||||
public String mutationOperatorTipText() {
|
|
||||||
return "Choose the mutation operator to use.";
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* This method allows you to set the mutation probability, e.g. the chance
|
* This method allows you to set the mutation probability, e.g. the chance
|
||||||
* that mutation occurs at all.
|
* that mutation occurs at all.
|
||||||
*
|
*
|
||||||
* @param mutprob The mutation probability.
|
* @param mutprob The mutation probability.
|
||||||
*/
|
*/
|
||||||
|
@Parameter(name = "pm", description = "The chance that mutation occurs.")
|
||||||
public void setMutationProbability(double mutprob) {
|
public void setMutationProbability(double mutprob) {
|
||||||
if (mutprob < 0) {
|
if (mutprob < 0) {
|
||||||
mutprob = 0;
|
mutprob = 0;
|
||||||
@ -846,16 +845,13 @@ public abstract class AbstractEAIndividual implements IndividualInterface, java.
|
|||||||
return mutationProbability;
|
return mutationProbability;
|
||||||
}
|
}
|
||||||
|
|
||||||
public String mutationProbabilityTipText() {
|
|
||||||
return "The chance that mutation occurs.";
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* This method allows you to choose from multiple crossover operators. Note:
|
* This method allows you to choose from multiple crossover operators. Note:
|
||||||
* If the operator doeesn't suite the data nothing will happen.
|
* If the operator doesn't suite the data nothing will happen.
|
||||||
*
|
*
|
||||||
* @param crossover The crossover operator.
|
* @param crossover The crossover operator.
|
||||||
*/
|
*/
|
||||||
|
@Parameter(name = "crossover", description = "The crossover operator.")
|
||||||
public void setCrossoverOperator(InterfaceCrossover crossover) {
|
public void setCrossoverOperator(InterfaceCrossover crossover) {
|
||||||
this.crossoverOperator = crossover;
|
this.crossoverOperator = crossover;
|
||||||
}
|
}
|
||||||
@ -864,15 +860,12 @@ public abstract class AbstractEAIndividual implements IndividualInterface, java.
|
|||||||
return this.crossoverOperator;
|
return this.crossoverOperator;
|
||||||
}
|
}
|
||||||
|
|
||||||
public String crossoverOperatorTipText() {
|
|
||||||
return "Choose the crossover operator to use.";
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* This method allows to set the crossover probability
|
* This method allows to set the crossover probability
|
||||||
*
|
*
|
||||||
* @param prob
|
* @param prob
|
||||||
*/
|
*/
|
||||||
|
@Parameter(name = "pc", description = "The crossover rate")
|
||||||
public void setCrossoverProbability(double prob) {
|
public void setCrossoverProbability(double prob) {
|
||||||
this.crossoverProbability = prob;
|
this.crossoverProbability = prob;
|
||||||
if (this.crossoverProbability > 1) {
|
if (this.crossoverProbability > 1) {
|
||||||
@ -887,22 +880,15 @@ public abstract class AbstractEAIndividual implements IndividualInterface, java.
|
|||||||
return this.crossoverProbability;
|
return this.crossoverProbability;
|
||||||
}
|
}
|
||||||
|
|
||||||
public String crossoverProbabilityTipText() {
|
|
||||||
return "The chance that crossover occurs.";
|
|
||||||
}
|
|
||||||
|
|
||||||
public InterfaceInitialization getInitOperator() {
|
public InterfaceInitialization getInitOperator() {
|
||||||
return initializationOperator;
|
return initializationOperator;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@Parameter(name = "initop", description = "The initialization method for the individual")
|
||||||
public void setInitOperator(InterfaceInitialization mInitOperator) {
|
public void setInitOperator(InterfaceInitialization mInitOperator) {
|
||||||
initializationOperator = mInitOperator;
|
initializationOperator = mInitOperator;
|
||||||
}
|
}
|
||||||
|
|
||||||
public String initOperatorTipText() {
|
|
||||||
return "An initialization method for the individual";
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* This method allows you to store an arbitrary value under an arbitrary
|
* This method allows you to store an arbitrary value under an arbitrary
|
||||||
* name.
|
* name.
|
||||||
|
@ -244,8 +244,8 @@ public class ESIndividualDoubleData extends AbstractEAIndividual implements Inte
|
|||||||
* @param opt The optimization problem that is to be solved.
|
* @param opt The optimization problem that is to be solved.
|
||||||
*/
|
*/
|
||||||
@Override
|
@Override
|
||||||
public void init(InterfaceOptimizationProblem opt) {
|
public void initialize(InterfaceOptimizationProblem opt) {
|
||||||
super.init(opt);
|
super.initialize(opt);
|
||||||
// evil operators may not respect the range, so at least give some hint
|
// evil operators may not respect the range, so at least give some hint
|
||||||
if (!Mathematics.isInRange(genotype, range)) {
|
if (!Mathematics.isInRange(genotype, range)) {
|
||||||
EVAERROR.errorMsgOnce("Warning: Individual out of range after initialization (and potential initial crossover/mutation)!");
|
EVAERROR.errorMsgOnce("Warning: Individual out of range after initialization (and potential initial crossover/mutation)!");
|
||||||
|
@ -76,9 +76,9 @@ public class GAESIndividualBinaryDoubleData extends AbstractEAIndividual impleme
|
|||||||
* @param opt The optimization problem that is to be solved.
|
* @param opt The optimization problem that is to be solved.
|
||||||
*/
|
*/
|
||||||
@Override
|
@Override
|
||||||
public void init(InterfaceOptimizationProblem opt) {
|
public void initialize(InterfaceOptimizationProblem opt) {
|
||||||
((AbstractEAIndividual) this.doubleIndividual).init(opt);
|
((AbstractEAIndividual) this.doubleIndividual).initialize(opt);
|
||||||
((AbstractEAIndividual) this.binaryIndividual).init(opt);
|
((AbstractEAIndividual) this.binaryIndividual).initialize(opt);
|
||||||
}
|
}
|
||||||
|
|
||||||
@Override
|
@Override
|
||||||
@ -105,8 +105,8 @@ public class GAESIndividualBinaryDoubleData extends AbstractEAIndividual impleme
|
|||||||
((AbstractEAIndividual) this.binaryIndividual).initByValue(((Object[]) obj)[0], opt);
|
((AbstractEAIndividual) this.binaryIndividual).initByValue(((Object[]) obj)[0], opt);
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
((AbstractEAIndividual) this.doubleIndividual).init(opt);
|
((AbstractEAIndividual) this.doubleIndividual).initialize(opt);
|
||||||
((AbstractEAIndividual) this.binaryIndividual).init(opt);
|
((AbstractEAIndividual) this.binaryIndividual).initialize(opt);
|
||||||
System.out.println("Initial value for GAESIndividualDoubleData is not suitable!");
|
System.out.println("Initial value for GAESIndividualDoubleData is not suitable!");
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -72,9 +72,9 @@ public class GAPIndividualProgramData extends AbstractEAIndividual implements In
|
|||||||
* @param opt The optimization problem that is to be solved.
|
* @param opt The optimization problem that is to be solved.
|
||||||
*/
|
*/
|
||||||
@Override
|
@Override
|
||||||
public void init(InterfaceOptimizationProblem opt) {
|
public void initialize(InterfaceOptimizationProblem opt) {
|
||||||
((AbstractEAIndividual) this.numberData).init(opt);
|
((AbstractEAIndividual) this.numberData).initialize(opt);
|
||||||
((AbstractEAIndividual) this.programData).init(opt);
|
((AbstractEAIndividual) this.programData).initialize(opt);
|
||||||
}
|
}
|
||||||
|
|
||||||
@Override
|
@Override
|
||||||
@ -101,8 +101,8 @@ public class GAPIndividualProgramData extends AbstractEAIndividual implements In
|
|||||||
((AbstractEAIndividual) this.programData).initByValue(((Object[]) obj)[0], opt);
|
((AbstractEAIndividual) this.programData).initByValue(((Object[]) obj)[0], opt);
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
((AbstractEAIndividual) this.numberData).init(opt);
|
((AbstractEAIndividual) this.numberData).initialize(opt);
|
||||||
((AbstractEAIndividual) this.programData).init(opt);
|
((AbstractEAIndividual) this.programData).initialize(opt);
|
||||||
System.out.println("Initial value for GAPIndividualDoubleData is not suitable!");
|
System.out.println("Initial value for GAPIndividualDoubleData is not suitable!");
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -72,9 +72,9 @@ public class GIOBGAIndividualIntegerPermutationData extends AbstractEAIndividual
|
|||||||
* @param opt The optimization problem that is to be solved.
|
* @param opt The optimization problem that is to be solved.
|
||||||
*/
|
*/
|
||||||
@Override
|
@Override
|
||||||
public void init(InterfaceOptimizationProblem opt) {
|
public void initialize(InterfaceOptimizationProblem opt) {
|
||||||
((AbstractEAIndividual) this.integerData).init(opt);
|
((AbstractEAIndividual) this.integerData).initialize(opt);
|
||||||
((AbstractEAIndividual) this.permutationData).init(opt);
|
((AbstractEAIndividual) this.permutationData).initialize(opt);
|
||||||
}
|
}
|
||||||
|
|
||||||
@Override
|
@Override
|
||||||
@ -101,8 +101,8 @@ public class GIOBGAIndividualIntegerPermutationData extends AbstractEAIndividual
|
|||||||
((AbstractEAIndividual) this.permutationData).initByValue(((Object[]) obj)[0], opt);
|
((AbstractEAIndividual) this.permutationData).initByValue(((Object[]) obj)[0], opt);
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
((AbstractEAIndividual) this.integerData).init(opt);
|
((AbstractEAIndividual) this.integerData).initialize(opt);
|
||||||
((AbstractEAIndividual) this.permutationData).init(opt);
|
((AbstractEAIndividual) this.permutationData).initialize(opt);
|
||||||
System.out.println("Initial value for GIOBGAIndividualIntegerPermutationData is not suitable!");
|
System.out.println("Initial value for GIOBGAIndividualIntegerPermutationData is not suitable!");
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -110,12 +110,12 @@ public class TestESCrossover implements java.io.Serializable {
|
|||||||
tmpIndyD.setDoubleRange(newRange);
|
tmpIndyD.setDoubleRange(newRange);
|
||||||
for (int i = 0; i < partners.getTargetSize(); i++) {
|
for (int i = 0; i < partners.getTargetSize(); i++) {
|
||||||
tmpIndyEA = (AbstractEAIndividual) ((AbstractEAIndividual) tmpIndyD).clone();
|
tmpIndyEA = (AbstractEAIndividual) ((AbstractEAIndividual) tmpIndyD).clone();
|
||||||
tmpIndyEA.init(optimizationProblem);
|
tmpIndyEA.initialize(optimizationProblem);
|
||||||
partners.add(tmpIndyEA);
|
partners.add(tmpIndyEA);
|
||||||
}
|
}
|
||||||
partners.init();
|
partners.init();
|
||||||
daddy = (AbstractEAIndividual) ((AbstractEAIndividual) tmpIndyD).clone();
|
daddy = (AbstractEAIndividual) ((AbstractEAIndividual) tmpIndyD).clone();
|
||||||
daddy.init(optimizationProblem);
|
daddy.initialize(optimizationProblem);
|
||||||
plot.clearAll();
|
plot.clearAll();
|
||||||
plot.setUnconnectedPoint(-2, -2, 0);
|
plot.setUnconnectedPoint(-2, -2, 0);
|
||||||
plot.setUnconnectedPoint(2, 2, 0);
|
plot.setUnconnectedPoint(2, 2, 0);
|
||||||
|
@ -541,7 +541,7 @@ public class ANPSO extends NichePSO implements InterfaceAdditionalPopulationInfo
|
|||||||
if (reinitSuperfl) {
|
if (reinitSuperfl) {
|
||||||
for (int i = 0; i < tmpPop.size(); i++) {
|
for (int i = 0; i < tmpPop.size(); i++) {
|
||||||
AbstractEAIndividual indy = tmpPop.getEAIndividual(i);
|
AbstractEAIndividual indy = tmpPop.getEAIndividual(i);
|
||||||
indy.init(optimizationProblem);
|
indy.initialize(optimizationProblem);
|
||||||
indy.resetFitness(Double.MAX_VALUE); // TODO this is not so nice... they should be collected in a reinit-list and inserted at the beginning of the next optimize step
|
indy.resetFitness(Double.MAX_VALUE); // TODO this is not so nice... they should be collected in a reinit-list and inserted at the beginning of the next optimize step
|
||||||
ParticleSwarmOptimization.initIndividualDefaults(indy, 0.2);
|
ParticleSwarmOptimization.initIndividualDefaults(indy, 0.2);
|
||||||
ParticleSwarmOptimization.initIndividualMemory(indy);
|
ParticleSwarmOptimization.initIndividualMemory(indy);
|
||||||
|
@ -194,7 +194,7 @@ public class ArtificialBeeColony extends AbstractOptimizer implements Serializab
|
|||||||
*/
|
*/
|
||||||
AbstractEAIndividual oldestIndy = getOldestIndividual();
|
AbstractEAIndividual oldestIndy = getOldestIndividual();
|
||||||
if (oldestIndy.getAge() > this.maxTrials) {
|
if (oldestIndy.getAge() > this.maxTrials) {
|
||||||
oldestIndy.init(this.optimizationProblem);
|
oldestIndy.initialize(this.optimizationProblem);
|
||||||
this.optimizationProblem.evaluate(oldestIndy);
|
this.optimizationProblem.evaluate(oldestIndy);
|
||||||
this.population.incrFunctionCalls();
|
this.population.incrFunctionCalls();
|
||||||
}
|
}
|
||||||
|
@ -1,6 +1,5 @@
|
|||||||
package eva2.optimization.strategies;
|
package eva2.optimization.strategies;
|
||||||
|
|
||||||
import eva2.optimization.population.InterfacePopulationChangedEventListener;
|
|
||||||
import eva2.optimization.individuals.AbstractEAIndividual;
|
import eva2.optimization.individuals.AbstractEAIndividual;
|
||||||
import eva2.optimization.operator.mutation.InterfaceAdaptOperatorGenerational;
|
import eva2.optimization.operator.mutation.InterfaceAdaptOperatorGenerational;
|
||||||
import eva2.optimization.operator.selection.InterfaceSelection;
|
import eva2.optimization.operator.selection.InterfaceSelection;
|
||||||
@ -12,8 +11,6 @@ import eva2.optimization.population.SolutionSet;
|
|||||||
import eva2.problems.InterfaceOptimizationProblem;
|
import eva2.problems.InterfaceOptimizationProblem;
|
||||||
import eva2.util.annotation.Description;
|
import eva2.util.annotation.Description;
|
||||||
|
|
||||||
import java.util.Vector;
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* The traditional genetic algorithms as devised by Holland. To only special
|
* The traditional genetic algorithms as devised by Holland. To only special
|
||||||
* here it the plague factor which reduces the population size to tune from a
|
* here it the plague factor which reduces the population size to tune from a
|
||||||
@ -28,7 +25,6 @@ public class GeneticAlgorithm extends AbstractOptimizer implements java.io.Seria
|
|||||||
private boolean useElitism = true;
|
private boolean useElitism = true;
|
||||||
private int plague = 0;
|
private int plague = 0;
|
||||||
private int numberOfPartners = 1;
|
private int numberOfPartners = 1;
|
||||||
transient private Vector<InterfacePopulationChangedEventListener> changeListener;
|
|
||||||
|
|
||||||
public GeneticAlgorithm() {
|
public GeneticAlgorithm() {
|
||||||
}
|
}
|
||||||
@ -153,38 +149,6 @@ public class GeneticAlgorithm extends AbstractOptimizer implements java.io.Seria
|
|||||||
this.firePropertyChangedEvent(Population.NEXT_GENERATION_PERFORMED);
|
this.firePropertyChangedEvent(Population.NEXT_GENERATION_PERFORMED);
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
|
||||||
* This method allows you to add the LectureGUI as listener to the Optimizer
|
|
||||||
*
|
|
||||||
* @param ea
|
|
||||||
*/
|
|
||||||
@Override
|
|
||||||
public void addPopulationChangedEventListener(InterfacePopulationChangedEventListener ea) {
|
|
||||||
if (this.changeListener == null) {
|
|
||||||
this.changeListener = new Vector<>();
|
|
||||||
}
|
|
||||||
this.changeListener.add(ea);
|
|
||||||
}
|
|
||||||
|
|
||||||
@Override
|
|
||||||
public boolean removePopulationChangedEventListener(
|
|
||||||
InterfacePopulationChangedEventListener ea) {
|
|
||||||
return changeListener != null && changeListener.removeElement(ea);
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Something has changed
|
|
||||||
*
|
|
||||||
* @param name
|
|
||||||
*/
|
|
||||||
protected void firePropertyChangedEvent(String name) {
|
|
||||||
if (this.changeListener != null) {
|
|
||||||
for (int i = 0; i < this.changeListener.size(); i++) {
|
|
||||||
this.changeListener.get(i).registerPopulationStateChanged(this, name);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
@Override
|
@Override
|
||||||
public InterfaceOptimizationProblem getProblem() {
|
public InterfaceOptimizationProblem getProblem() {
|
||||||
return this.optimizationProblem;
|
return this.optimizationProblem;
|
||||||
|
@ -146,7 +146,7 @@ public class ParticleFilterOptimization extends AbstractOptimizer implements jav
|
|||||||
int i;
|
int i;
|
||||||
for (i = 0; (i + parents.getTargetSize()) < pop.getTargetSize(); i++) {
|
for (i = 0; (i + parents.getTargetSize()) < pop.getTargetSize(); i++) {
|
||||||
immi = (AbstractEAIndividual) pop.getEAIndividual(0).clone();
|
immi = (AbstractEAIndividual) pop.getEAIndividual(0).clone();
|
||||||
immi.init(getProblem());
|
immi.initialize(getProblem());
|
||||||
parents.add(immi);
|
parents.add(immi);
|
||||||
}
|
}
|
||||||
parents.synchSize();
|
parents.synchSize();
|
||||||
|
@ -481,7 +481,7 @@ public class ParticleSubSwarmOptimization extends ParticleSwarmOptimizationGCPSO
|
|||||||
|
|
||||||
for (int i = 0; i < tmp.getTargetSize(); i++) {
|
for (int i = 0; i < tmp.getTargetSize(); i++) {
|
||||||
tmpIndy = (AbstractEAIndividual) template.clone();
|
tmpIndy = (AbstractEAIndividual) template.clone();
|
||||||
tmpIndy.init(prob);
|
tmpIndy.initialize(prob);
|
||||||
tmp.add(tmpIndy);
|
tmp.add(tmpIndy);
|
||||||
}
|
}
|
||||||
tmp.init();
|
tmp.init();
|
||||||
|
@ -954,7 +954,7 @@ v[d] = cmin * v[d];
|
|||||||
}
|
}
|
||||||
|
|
||||||
@Override
|
@Override
|
||||||
public void init(InterfaceOptimizationProblem opt) {
|
public void initialize(InterfaceOptimizationProblem opt) {
|
||||||
// TODO whats this for?
|
// TODO whats this for?
|
||||||
for (int i = 0; i < this.position.x.length; i++) {
|
for (int i = 0; i < this.position.x.length; i++) {
|
||||||
this.position.x[0] = 0.;
|
this.position.x[0] = 0.;
|
||||||
@ -983,7 +983,7 @@ v[d] = cmin * v[d];
|
|||||||
}
|
}
|
||||||
this.setDoubleGenotype(x);
|
this.setDoubleGenotype(x);
|
||||||
} else {
|
} else {
|
||||||
this.init(opt);
|
this.initialize(opt);
|
||||||
System.err.println("Initial value for ESIndividualDoubleData is not double[]!");
|
System.err.println("Initial value for ESIndividualDoubleData is not double[]!");
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -104,7 +104,7 @@ public class ImpactOfDimensionOnMOEAs {
|
|||||||
((InterfaceDataTypeDouble) template).setDoubleDataLength(numberOfVariables);
|
((InterfaceDataTypeDouble) template).setDoubleDataLength(numberOfVariables);
|
||||||
for (int i = 0; i < popSize; i++) {
|
for (int i = 0; i < popSize; i++) {
|
||||||
tmpIndy = (AbstractEAIndividual) template.clone();
|
tmpIndy = (AbstractEAIndividual) template.clone();
|
||||||
tmpIndy.init(null);
|
tmpIndy.initialize(null);
|
||||||
pop.add(tmpIndy);
|
pop.add(tmpIndy);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -57,7 +57,7 @@ public abstract class AbstractMultiModalProblemKnown extends AbstractProblemDoub
|
|||||||
((InterfaceDataTypeDouble) this.template).setDoubleRange(makeRange());
|
((InterfaceDataTypeDouble) this.template).setDoubleRange(makeRange());
|
||||||
for (int i = 0; i < population.getTargetSize(); i++) {
|
for (int i = 0; i < population.getTargetSize(); i++) {
|
||||||
tmpIndy = (AbstractEAIndividual) this.template.clone();
|
tmpIndy = (AbstractEAIndividual) this.template.clone();
|
||||||
tmpIndy.init(this);
|
tmpIndy.initialize(this);
|
||||||
population.add(tmpIndy);
|
population.add(tmpIndy);
|
||||||
}
|
}
|
||||||
// population initialize must be last
|
// population initialize must be last
|
||||||
|
@ -191,7 +191,7 @@ public abstract class AbstractOptimizationProblem implements InterfaceOptimizati
|
|||||||
|
|
||||||
for (int i = 0; i < population.getTargetSize(); i++) {
|
for (int i = 0; i < population.getTargetSize(); i++) {
|
||||||
tmpIndy = (AbstractEAIndividual) template.clone();
|
tmpIndy = (AbstractEAIndividual) template.clone();
|
||||||
tmpIndy.init(prob);
|
tmpIndy.initialize(prob);
|
||||||
population.add(tmpIndy);
|
population.add(tmpIndy);
|
||||||
}
|
}
|
||||||
// population initialize must be last
|
// population initialize must be last
|
||||||
|
@ -160,7 +160,7 @@ public class BKnapsackProblem extends AbstractProblemBinary implements java.io.S
|
|||||||
}
|
}
|
||||||
|
|
||||||
protected void initIndy(int k, AbstractEAIndividual indy) {
|
protected void initIndy(int k, AbstractEAIndividual indy) {
|
||||||
indy.init(this);
|
indy.initialize(this);
|
||||||
if (RNG.flipCoin(this.problemSpecificInit)) {
|
if (RNG.flipCoin(this.problemSpecificInit)) {
|
||||||
BitSet tmpSet = new BitSet();
|
BitSet tmpSet = new BitSet();
|
||||||
tmpSet.clear();
|
tmpSet.clear();
|
||||||
|
Loading…
x
Reference in New Issue
Block a user