Added MLTGA (Mutating LTGA) which mutates to generate new Individuals instead of crossover (as in the LTGA)
This commit is contained in:
parent
eecbb18f51
commit
ffd4041594
396
src/eva2/server/go/strategies/MLTGA.java
Normal file
396
src/eva2/server/go/strategies/MLTGA.java
Normal file
@ -0,0 +1,396 @@
|
||||
package eva2.server.go.strategies;
|
||||
|
||||
import java.util.BitSet;
|
||||
import java.util.Collection;
|
||||
import java.util.HashSet;
|
||||
import java.util.LinkedList;
|
||||
import java.util.Set;
|
||||
import java.util.Stack;
|
||||
import java.util.logging.Level;
|
||||
import java.util.logging.Logger;
|
||||
|
||||
import eva2.gui.BeanInspector;
|
||||
import eva2.server.go.InterfacePopulationChangedEventListener;
|
||||
import eva2.server.go.individuals.AbstractEAIndividual;
|
||||
import eva2.server.go.individuals.InterfaceDataTypeBinary;
|
||||
import eva2.server.go.individuals.InterfaceGAIndividual;
|
||||
import eva2.server.go.populations.InterfaceSolutionSet;
|
||||
import eva2.server.go.populations.Population;
|
||||
import eva2.server.go.populations.SolutionSet;
|
||||
import eva2.server.go.problems.AbstractOptimizationProblem;
|
||||
import eva2.server.go.problems.BKnapsackProblem;
|
||||
import eva2.server.go.problems.InterfaceOptimizationProblem;
|
||||
import eva2.tools.Pair;
|
||||
import eva2.tools.math.SpecialFunction;
|
||||
|
||||
public class MLTGA implements InterfaceOptimizer, java.io.Serializable, InterfacePopulationChangedEventListener {
|
||||
|
||||
private static final Logger LOGGER = Logger.getLogger(MLTGA.class.getName());
|
||||
transient private InterfacePopulationChangedEventListener m_Listener = null;
|
||||
private String m_Identifier = "LTGA";
|
||||
private int probDim = 8;
|
||||
private int fitCrit = -1;
|
||||
private int popSize = 50;
|
||||
private Population population = new Population();
|
||||
private AbstractOptimizationProblem problem = new BKnapsackProblem();
|
||||
private AbstractEAIndividual template = null;
|
||||
private int generationCycle = 500;
|
||||
private boolean elitism = true;
|
||||
|
||||
public MLTGA() {
|
||||
}
|
||||
|
||||
public MLTGA(MLTGA l) {
|
||||
this.m_Listener = l.m_Listener;
|
||||
this.m_Identifier = l.m_Identifier;
|
||||
this.probDim = l.probDim;
|
||||
this.popSize = l.popSize;
|
||||
this.population = (Population) l.population.clone();
|
||||
this.problem = (AbstractOptimizationProblem) l.problem.clone();
|
||||
this.template = (AbstractEAIndividual) template.clone();
|
||||
}
|
||||
|
||||
@Override
|
||||
public Object clone() {
|
||||
return new MLTGA(this);
|
||||
}
|
||||
|
||||
@Override
|
||||
public String getName() {
|
||||
return "Mutating Linkage Tree Genetic Algorithm";
|
||||
}
|
||||
|
||||
public static String globalInfo() {
|
||||
return "Modified implementation of the Linkage Tree Genetic Algorithm.";
|
||||
}
|
||||
|
||||
@Override
|
||||
public void addPopulationChangedEventListener(
|
||||
InterfacePopulationChangedEventListener ea) {
|
||||
this.m_Listener = ea;
|
||||
|
||||
}
|
||||
|
||||
@Override
|
||||
public boolean removePopulationChangedEventListener(
|
||||
InterfacePopulationChangedEventListener ea) {
|
||||
if (m_Listener == ea) {
|
||||
m_Listener = null;
|
||||
return true;
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
private void defaultInit() {
|
||||
if (population == null) {
|
||||
this.population = new Population(this.popSize);
|
||||
} else {
|
||||
this.population.setTargetPopSize(this.popSize);
|
||||
}
|
||||
this.template = this.problem.getIndividualTemplate();
|
||||
if (!(template instanceof InterfaceDataTypeBinary)) {
|
||||
LOGGER.log(Level.WARNING, "Requiring binary data!");
|
||||
} else {
|
||||
Object dim = BeanInspector.callIfAvailable(problem,
|
||||
"getProblemDimension", null);
|
||||
if (dim == null) {
|
||||
LOGGER.log(Level.WARNING, "Couldn't get problem dimension!");
|
||||
}
|
||||
probDim = (Integer) dim;
|
||||
((InterfaceDataTypeBinary) this.template).SetBinaryGenotype(new BitSet(probDim));
|
||||
}
|
||||
this.population.addPopulationChangedEventListener(this);
|
||||
this.population.setNotifyEvalInterval(this.generationCycle);
|
||||
}
|
||||
|
||||
private static BitSet getBinaryData(AbstractEAIndividual indy) {
|
||||
if (indy instanceof InterfaceGAIndividual) {
|
||||
return ((InterfaceGAIndividual) indy).getBGenotype();
|
||||
} else if (indy instanceof InterfaceDataTypeBinary) {
|
||||
return ((InterfaceDataTypeBinary) indy).getBinaryData();
|
||||
} else {
|
||||
throw new RuntimeException(
|
||||
"Unable to get binary representation for "
|
||||
+ indy.getClass());
|
||||
}
|
||||
}
|
||||
|
||||
@Override
|
||||
public void init() {
|
||||
defaultInit();
|
||||
this.problem.initPopulation(this.population);
|
||||
this.evaluatePopulation(this.population);
|
||||
this.firePropertyChangedEvent(Population.nextGenerationPerformed);
|
||||
}
|
||||
|
||||
private void evaluatePopulation(Population pop) {
|
||||
for (int i = 0; i < pop.size(); i++) {
|
||||
evaluate(pop.getEAIndividual(i));
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* evaluate the given Individual and increments the counter. if the
|
||||
* individual is null, only the counter is incremented
|
||||
*
|
||||
* @param indy the individual you want to evaluate
|
||||
*/
|
||||
private void evaluate(AbstractEAIndividual indy) {
|
||||
// evaluate the given individual if it is not null
|
||||
if (indy == null) {
|
||||
LOGGER.log(Level.WARNING, "tried to evaluate null");
|
||||
return;
|
||||
}
|
||||
this.problem.evaluate(indy);
|
||||
// increment the number of evaluations
|
||||
this.population.incrFunctionCalls();
|
||||
}
|
||||
|
||||
@Override
|
||||
public void initByPopulation(Population pop, boolean reset) {
|
||||
if (reset) {
|
||||
init();
|
||||
} else {
|
||||
defaultInit();
|
||||
this.population = pop;
|
||||
}
|
||||
}
|
||||
|
||||
private Stack<Set<Integer>> buildLinkageTree() {
|
||||
// the final tree
|
||||
Stack<Set<Integer>> linkageTree = new Stack<Set<Integer>>();
|
||||
// the stack to cluster here clusters can be removed
|
||||
Stack<Set<Integer>> workingTree = new Stack<Set<Integer>>();
|
||||
// add the problem variables to the stacks
|
||||
for (int i = 0; i < this.probDim; i++) {
|
||||
Set<Integer> s1 = new HashSet<Integer>();
|
||||
Set<Integer> s2 = new HashSet<Integer>();
|
||||
s1.add(i);
|
||||
s2.add(i);
|
||||
linkageTree.add(s1);
|
||||
workingTree.add(s2);
|
||||
}
|
||||
// double[] probMass = calculateProbabilityMassFunction();
|
||||
// until there is only one cluster left
|
||||
while (workingTree.size() > 1) {
|
||||
Pair<Set<Integer>, Set<Integer>> toCluster = findNearestClusters(workingTree);
|
||||
// add all elements from the second cluster to the first one
|
||||
toCluster.head.addAll(toCluster.tail);
|
||||
// remove the second cluster from the working set
|
||||
workingTree.remove(toCluster.tail);
|
||||
// add the combined cluster to the linkage tree
|
||||
linkageTree.add(toCluster.head);
|
||||
}
|
||||
return linkageTree;
|
||||
}
|
||||
|
||||
private Pair<Set<Integer>, Set<Integer>> findNearestClusters(Stack<Set<Integer>> stack) {
|
||||
Set<Integer> bestI = new HashSet<Integer>();
|
||||
Set<Integer> bestJ = new HashSet<Integer>();
|
||||
double bestScore = Double.MAX_VALUE;
|
||||
for (int i = 0; i < stack.size(); i++) {
|
||||
Set<Integer> s1 = stack.get(i);
|
||||
for (int j = i + 1; j < stack.size(); j++) {
|
||||
Set<Integer> s2 = stack.get(j);
|
||||
double currDist = calculateDistance(s1, s2);
|
||||
// better cluster found
|
||||
if (currDist < bestScore) {
|
||||
bestI = s1;
|
||||
bestJ = s2;
|
||||
bestScore = currDist;
|
||||
}
|
||||
}
|
||||
}
|
||||
// return the best pair
|
||||
return new Pair<Set<Integer>, Set<Integer>>(bestI, bestJ);
|
||||
}
|
||||
|
||||
private double calculateDistance(Set<Integer> s1, Set<Integer> s2) {
|
||||
double entropy1 = calculateEntropy(s1);
|
||||
double entropy2 = calculateEntropy(s2);
|
||||
Set<Integer> combined = new HashSet<Integer>();
|
||||
combined.addAll(s1);
|
||||
combined.addAll(s2);
|
||||
double entropy3 = calculateEntropy(combined);
|
||||
return 2 - ((entropy1 + entropy2) / (entropy3));
|
||||
}
|
||||
|
||||
private double calculateEntropy(Set<Integer> s) {
|
||||
double entropy = 0.0;
|
||||
// for possible states {0,1} do
|
||||
for (int i = 0; i <= 1; i++) {
|
||||
int count = 0;
|
||||
// for every individual
|
||||
for (int k = 0; k < this.popSize; k++) {
|
||||
BitSet b = getBinaryData(this.population.getEAIndividual(k));
|
||||
boolean addCount = true;
|
||||
// for every specified Bit
|
||||
for (Integer value : s) {
|
||||
// is the bit not set correctly
|
||||
if (b.get(value) != (i == 1)) {
|
||||
addCount = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (addCount) {
|
||||
count++;
|
||||
}
|
||||
addCount = true;
|
||||
}
|
||||
entropy += ((double) count) * SpecialFunction.logb((double) count, 2.0);
|
||||
count = 0;
|
||||
}
|
||||
return entropy;
|
||||
}
|
||||
|
||||
@Override
|
||||
public void optimize() {
|
||||
this.problem.evaluatePopulationStart(this.population);
|
||||
Stack<Set<Integer>> linkageTree = buildLinkageTree();
|
||||
Population newPop = new Population(this.popSize);
|
||||
if(elitism){
|
||||
AbstractEAIndividual firstIndy = this.population.getBestEAIndividual();
|
||||
AbstractEAIndividual firstNewIndy = buildNewIndy(firstIndy, linkageTree);
|
||||
newPop.add(firstNewIndy);
|
||||
}
|
||||
for (int i = 0; i < this.popSize; i++) {
|
||||
if(this.elitism && i==0){
|
||||
continue;
|
||||
}
|
||||
Population indies = this.population.getRandNIndividuals(1);
|
||||
AbstractEAIndividual newIndy = buildNewIndy(indies.getEAIndividual(0), linkageTree);
|
||||
newPop.add(newIndy);
|
||||
}
|
||||
this.population.clear();
|
||||
this.population.addAll(newPop);
|
||||
this.problem.evaluatePopulationEnd(this.population);
|
||||
}
|
||||
|
||||
private AbstractEAIndividual buildNewIndy(AbstractEAIndividual indy,
|
||||
Stack<Set<Integer>> linkageTree) {
|
||||
for (Set<Integer> mask : linkageTree) {
|
||||
BitSet gen = getBinaryData(indy);
|
||||
BitSet newGene = (BitSet) gen.clone();
|
||||
for (Integer flipID : mask) {
|
||||
newGene.flip(flipID);
|
||||
}
|
||||
AbstractEAIndividual newIndy = (AbstractEAIndividual) this.template.clone();
|
||||
((InterfaceDataTypeBinary) newIndy).SetBinaryGenotype(newGene);
|
||||
evaluate(newIndy);
|
||||
if (newIndy.getFitness(0) < indy.getFitness(0)) {
|
||||
indy = newIndy;
|
||||
}
|
||||
}
|
||||
return indy;
|
||||
}
|
||||
|
||||
/**
|
||||
* Something has changed
|
||||
*/
|
||||
protected void firePropertyChangedEvent(String name) {
|
||||
if (this.m_Listener != null) {
|
||||
this.m_Listener.registerPopulationStateChanged(this, name);
|
||||
}
|
||||
}
|
||||
|
||||
@Override
|
||||
public Population getPopulation() {
|
||||
return this.population;
|
||||
}
|
||||
|
||||
@Override
|
||||
public void setPopulation(Population pop) {
|
||||
this.population = pop;
|
||||
}
|
||||
|
||||
@Override
|
||||
public InterfaceSolutionSet getAllSolutions() {
|
||||
return new SolutionSet(this.population);
|
||||
}
|
||||
|
||||
@Override
|
||||
public void setIdentifier(String name) {
|
||||
this.m_Identifier = name;
|
||||
}
|
||||
|
||||
@Override
|
||||
public String getIdentifier() {
|
||||
return this.m_Identifier;
|
||||
}
|
||||
|
||||
@Override
|
||||
public void SetProblem(InterfaceOptimizationProblem problem) {
|
||||
this.problem = (AbstractOptimizationProblem) problem;
|
||||
}
|
||||
|
||||
public boolean getElitism(){
|
||||
return this.elitism;
|
||||
}
|
||||
|
||||
public void setElitism(boolean b){
|
||||
this.elitism = b;
|
||||
}
|
||||
|
||||
public String elitismTipText(){
|
||||
return "use elitism?";
|
||||
}
|
||||
|
||||
@Override
|
||||
public InterfaceOptimizationProblem getProblem() {
|
||||
return this.problem;
|
||||
}
|
||||
|
||||
@Override
|
||||
public String getStringRepresentation() {
|
||||
return "Linkage Tree GA";
|
||||
}
|
||||
|
||||
@Override
|
||||
public void freeWilly() {
|
||||
}
|
||||
|
||||
@Override
|
||||
public void registerPopulationStateChanged(Object source, String name) {
|
||||
// The events of the interim hill climbing population will be caught here
|
||||
if (name.compareTo(Population.funCallIntervalReached) == 0) {
|
||||
// set funcalls to real value
|
||||
this.population.setFunctionCalls(((Population) source).getFunctionCalls());
|
||||
this.firePropertyChangedEvent(Population.nextGenerationPerformed);
|
||||
}
|
||||
}
|
||||
|
||||
public static void main(String[] args) {
|
||||
MLTGA ltga = new MLTGA();
|
||||
ltga.init();
|
||||
ltga.optimize();
|
||||
System.out.println(ltga.popSize);
|
||||
Population p = ltga.getPopulation();
|
||||
System.out.println(p.getFunctionCalls() + "\t" + p.size());
|
||||
System.out.println(p.getBestEAIndividual().getStringRepresentation());
|
||||
ltga.optimize();
|
||||
p = ltga.getPopulation();
|
||||
System.out.println(p.getFunctionCalls() + "\t" + p.size());
|
||||
System.out.println(p.getBestEAIndividual().getStringRepresentation());
|
||||
ltga.optimize();
|
||||
p = ltga.getPopulation();
|
||||
System.out.println(p.getFunctionCalls() + "\t" + p.size());
|
||||
System.out.println(p.getBestEAIndividual().getStringRepresentation());
|
||||
ltga.optimize();
|
||||
p = ltga.getPopulation();
|
||||
System.out.println(p.getFunctionCalls() + "\t" + p.size());
|
||||
System.out.println(p.getBestEAIndividual().getStringRepresentation());
|
||||
ltga.optimize();
|
||||
p = ltga.getPopulation();
|
||||
System.out.println(p.getFunctionCalls() + "\t" + p.size());
|
||||
System.out.println(p.getBestEAIndividual().getStringRepresentation());
|
||||
ltga.optimize();
|
||||
p = ltga.getPopulation();
|
||||
System.out.println(p.getFunctionCalls() + "\t" + p.size());
|
||||
System.out.println(p.getBestEAIndividual().getStringRepresentation());
|
||||
ltga.optimize();
|
||||
p = ltga.getPopulation();
|
||||
System.out.println(p.getFunctionCalls() + "\t" + p.size());
|
||||
System.out.println(p.getBestEAIndividual().getStringRepresentation());
|
||||
}
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user