Added MLTGA (Mutating LTGA) which mutates to generate new Individuals instead of crossover (as in the LTGA)

This commit is contained in:
Alexander Seitz 2013-01-21 09:56:24 +00:00
parent eecbb18f51
commit ffd4041594

View File

@ -0,0 +1,396 @@
package eva2.server.go.strategies;
import java.util.BitSet;
import java.util.Collection;
import java.util.HashSet;
import java.util.LinkedList;
import java.util.Set;
import java.util.Stack;
import java.util.logging.Level;
import java.util.logging.Logger;
import eva2.gui.BeanInspector;
import eva2.server.go.InterfacePopulationChangedEventListener;
import eva2.server.go.individuals.AbstractEAIndividual;
import eva2.server.go.individuals.InterfaceDataTypeBinary;
import eva2.server.go.individuals.InterfaceGAIndividual;
import eva2.server.go.populations.InterfaceSolutionSet;
import eva2.server.go.populations.Population;
import eva2.server.go.populations.SolutionSet;
import eva2.server.go.problems.AbstractOptimizationProblem;
import eva2.server.go.problems.BKnapsackProblem;
import eva2.server.go.problems.InterfaceOptimizationProblem;
import eva2.tools.Pair;
import eva2.tools.math.SpecialFunction;
public class MLTGA implements InterfaceOptimizer, java.io.Serializable, InterfacePopulationChangedEventListener {
private static final Logger LOGGER = Logger.getLogger(MLTGA.class.getName());
transient private InterfacePopulationChangedEventListener m_Listener = null;
private String m_Identifier = "LTGA";
private int probDim = 8;
private int fitCrit = -1;
private int popSize = 50;
private Population population = new Population();
private AbstractOptimizationProblem problem = new BKnapsackProblem();
private AbstractEAIndividual template = null;
private int generationCycle = 500;
private boolean elitism = true;
public MLTGA() {
}
public MLTGA(MLTGA l) {
this.m_Listener = l.m_Listener;
this.m_Identifier = l.m_Identifier;
this.probDim = l.probDim;
this.popSize = l.popSize;
this.population = (Population) l.population.clone();
this.problem = (AbstractOptimizationProblem) l.problem.clone();
this.template = (AbstractEAIndividual) template.clone();
}
@Override
public Object clone() {
return new MLTGA(this);
}
@Override
public String getName() {
return "Mutating Linkage Tree Genetic Algorithm";
}
public static String globalInfo() {
return "Modified implementation of the Linkage Tree Genetic Algorithm.";
}
@Override
public void addPopulationChangedEventListener(
InterfacePopulationChangedEventListener ea) {
this.m_Listener = ea;
}
@Override
public boolean removePopulationChangedEventListener(
InterfacePopulationChangedEventListener ea) {
if (m_Listener == ea) {
m_Listener = null;
return true;
} else {
return false;
}
}
private void defaultInit() {
if (population == null) {
this.population = new Population(this.popSize);
} else {
this.population.setTargetPopSize(this.popSize);
}
this.template = this.problem.getIndividualTemplate();
if (!(template instanceof InterfaceDataTypeBinary)) {
LOGGER.log(Level.WARNING, "Requiring binary data!");
} else {
Object dim = BeanInspector.callIfAvailable(problem,
"getProblemDimension", null);
if (dim == null) {
LOGGER.log(Level.WARNING, "Couldn't get problem dimension!");
}
probDim = (Integer) dim;
((InterfaceDataTypeBinary) this.template).SetBinaryGenotype(new BitSet(probDim));
}
this.population.addPopulationChangedEventListener(this);
this.population.setNotifyEvalInterval(this.generationCycle);
}
private static BitSet getBinaryData(AbstractEAIndividual indy) {
if (indy instanceof InterfaceGAIndividual) {
return ((InterfaceGAIndividual) indy).getBGenotype();
} else if (indy instanceof InterfaceDataTypeBinary) {
return ((InterfaceDataTypeBinary) indy).getBinaryData();
} else {
throw new RuntimeException(
"Unable to get binary representation for "
+ indy.getClass());
}
}
@Override
public void init() {
defaultInit();
this.problem.initPopulation(this.population);
this.evaluatePopulation(this.population);
this.firePropertyChangedEvent(Population.nextGenerationPerformed);
}
private void evaluatePopulation(Population pop) {
for (int i = 0; i < pop.size(); i++) {
evaluate(pop.getEAIndividual(i));
}
}
/**
* evaluate the given Individual and increments the counter. if the
* individual is null, only the counter is incremented
*
* @param indy the individual you want to evaluate
*/
private void evaluate(AbstractEAIndividual indy) {
// evaluate the given individual if it is not null
if (indy == null) {
LOGGER.log(Level.WARNING, "tried to evaluate null");
return;
}
this.problem.evaluate(indy);
// increment the number of evaluations
this.population.incrFunctionCalls();
}
@Override
public void initByPopulation(Population pop, boolean reset) {
if (reset) {
init();
} else {
defaultInit();
this.population = pop;
}
}
private Stack<Set<Integer>> buildLinkageTree() {
// the final tree
Stack<Set<Integer>> linkageTree = new Stack<Set<Integer>>();
// the stack to cluster here clusters can be removed
Stack<Set<Integer>> workingTree = new Stack<Set<Integer>>();
// add the problem variables to the stacks
for (int i = 0; i < this.probDim; i++) {
Set<Integer> s1 = new HashSet<Integer>();
Set<Integer> s2 = new HashSet<Integer>();
s1.add(i);
s2.add(i);
linkageTree.add(s1);
workingTree.add(s2);
}
// double[] probMass = calculateProbabilityMassFunction();
// until there is only one cluster left
while (workingTree.size() > 1) {
Pair<Set<Integer>, Set<Integer>> toCluster = findNearestClusters(workingTree);
// add all elements from the second cluster to the first one
toCluster.head.addAll(toCluster.tail);
// remove the second cluster from the working set
workingTree.remove(toCluster.tail);
// add the combined cluster to the linkage tree
linkageTree.add(toCluster.head);
}
return linkageTree;
}
private Pair<Set<Integer>, Set<Integer>> findNearestClusters(Stack<Set<Integer>> stack) {
Set<Integer> bestI = new HashSet<Integer>();
Set<Integer> bestJ = new HashSet<Integer>();
double bestScore = Double.MAX_VALUE;
for (int i = 0; i < stack.size(); i++) {
Set<Integer> s1 = stack.get(i);
for (int j = i + 1; j < stack.size(); j++) {
Set<Integer> s2 = stack.get(j);
double currDist = calculateDistance(s1, s2);
// better cluster found
if (currDist < bestScore) {
bestI = s1;
bestJ = s2;
bestScore = currDist;
}
}
}
// return the best pair
return new Pair<Set<Integer>, Set<Integer>>(bestI, bestJ);
}
private double calculateDistance(Set<Integer> s1, Set<Integer> s2) {
double entropy1 = calculateEntropy(s1);
double entropy2 = calculateEntropy(s2);
Set<Integer> combined = new HashSet<Integer>();
combined.addAll(s1);
combined.addAll(s2);
double entropy3 = calculateEntropy(combined);
return 2 - ((entropy1 + entropy2) / (entropy3));
}
private double calculateEntropy(Set<Integer> s) {
double entropy = 0.0;
// for possible states {0,1} do
for (int i = 0; i <= 1; i++) {
int count = 0;
// for every individual
for (int k = 0; k < this.popSize; k++) {
BitSet b = getBinaryData(this.population.getEAIndividual(k));
boolean addCount = true;
// for every specified Bit
for (Integer value : s) {
// is the bit not set correctly
if (b.get(value) != (i == 1)) {
addCount = false;
break;
}
}
if (addCount) {
count++;
}
addCount = true;
}
entropy += ((double) count) * SpecialFunction.logb((double) count, 2.0);
count = 0;
}
return entropy;
}
@Override
public void optimize() {
this.problem.evaluatePopulationStart(this.population);
Stack<Set<Integer>> linkageTree = buildLinkageTree();
Population newPop = new Population(this.popSize);
if(elitism){
AbstractEAIndividual firstIndy = this.population.getBestEAIndividual();
AbstractEAIndividual firstNewIndy = buildNewIndy(firstIndy, linkageTree);
newPop.add(firstNewIndy);
}
for (int i = 0; i < this.popSize; i++) {
if(this.elitism && i==0){
continue;
}
Population indies = this.population.getRandNIndividuals(1);
AbstractEAIndividual newIndy = buildNewIndy(indies.getEAIndividual(0), linkageTree);
newPop.add(newIndy);
}
this.population.clear();
this.population.addAll(newPop);
this.problem.evaluatePopulationEnd(this.population);
}
private AbstractEAIndividual buildNewIndy(AbstractEAIndividual indy,
Stack<Set<Integer>> linkageTree) {
for (Set<Integer> mask : linkageTree) {
BitSet gen = getBinaryData(indy);
BitSet newGene = (BitSet) gen.clone();
for (Integer flipID : mask) {
newGene.flip(flipID);
}
AbstractEAIndividual newIndy = (AbstractEAIndividual) this.template.clone();
((InterfaceDataTypeBinary) newIndy).SetBinaryGenotype(newGene);
evaluate(newIndy);
if (newIndy.getFitness(0) < indy.getFitness(0)) {
indy = newIndy;
}
}
return indy;
}
/**
* Something has changed
*/
protected void firePropertyChangedEvent(String name) {
if (this.m_Listener != null) {
this.m_Listener.registerPopulationStateChanged(this, name);
}
}
@Override
public Population getPopulation() {
return this.population;
}
@Override
public void setPopulation(Population pop) {
this.population = pop;
}
@Override
public InterfaceSolutionSet getAllSolutions() {
return new SolutionSet(this.population);
}
@Override
public void setIdentifier(String name) {
this.m_Identifier = name;
}
@Override
public String getIdentifier() {
return this.m_Identifier;
}
@Override
public void SetProblem(InterfaceOptimizationProblem problem) {
this.problem = (AbstractOptimizationProblem) problem;
}
public boolean getElitism(){
return this.elitism;
}
public void setElitism(boolean b){
this.elitism = b;
}
public String elitismTipText(){
return "use elitism?";
}
@Override
public InterfaceOptimizationProblem getProblem() {
return this.problem;
}
@Override
public String getStringRepresentation() {
return "Linkage Tree GA";
}
@Override
public void freeWilly() {
}
@Override
public void registerPopulationStateChanged(Object source, String name) {
// The events of the interim hill climbing population will be caught here
if (name.compareTo(Population.funCallIntervalReached) == 0) {
// set funcalls to real value
this.population.setFunctionCalls(((Population) source).getFunctionCalls());
this.firePropertyChangedEvent(Population.nextGenerationPerformed);
}
}
public static void main(String[] args) {
MLTGA ltga = new MLTGA();
ltga.init();
ltga.optimize();
System.out.println(ltga.popSize);
Population p = ltga.getPopulation();
System.out.println(p.getFunctionCalls() + "\t" + p.size());
System.out.println(p.getBestEAIndividual().getStringRepresentation());
ltga.optimize();
p = ltga.getPopulation();
System.out.println(p.getFunctionCalls() + "\t" + p.size());
System.out.println(p.getBestEAIndividual().getStringRepresentation());
ltga.optimize();
p = ltga.getPopulation();
System.out.println(p.getFunctionCalls() + "\t" + p.size());
System.out.println(p.getBestEAIndividual().getStringRepresentation());
ltga.optimize();
p = ltga.getPopulation();
System.out.println(p.getFunctionCalls() + "\t" + p.size());
System.out.println(p.getBestEAIndividual().getStringRepresentation());
ltga.optimize();
p = ltga.getPopulation();
System.out.println(p.getFunctionCalls() + "\t" + p.size());
System.out.println(p.getBestEAIndividual().getStringRepresentation());
ltga.optimize();
p = ltga.getPopulation();
System.out.println(p.getFunctionCalls() + "\t" + p.size());
System.out.println(p.getBestEAIndividual().getStringRepresentation());
ltga.optimize();
p = ltga.getPopulation();
System.out.println(p.getFunctionCalls() + "\t" + p.size());
System.out.println(p.getBestEAIndividual().getStringRepresentation());
}
}