241 lines
9.3 KiB
Java
241 lines
9.3 KiB
Java
package javaeva.server.go.strategies;
|
|
|
|
import javaeva.server.go.InterfacePopulationChangedEventListener;
|
|
import javaeva.server.go.individuals.AbstractEAIndividual;
|
|
import javaeva.server.go.operators.mutation.InterfaceMutation;
|
|
import javaeva.server.go.populations.Population;
|
|
import javaeva.server.go.problems.B1Problem;
|
|
import javaeva.server.go.problems.InterfaceOptimizationProblem;
|
|
|
|
|
|
/** This is a Multi-Start Hill-Climber, here the population size gives the number of
|
|
* multi-starts. Similar to the evolutionary programming strategy this strategy sets the
|
|
* mutation rate temporarily to 1.0.
|
|
* Copyright: Copyright (c) 2003
|
|
* Company: University of Tuebingen, Computer Architecture
|
|
* @author Felix Streichert
|
|
* @version: $Revision: 307 $
|
|
* $Date: 2007-12-04 14:31:47 +0100 (Tue, 04 Dec 2007) $
|
|
* $Author: mkron $
|
|
*/
|
|
|
|
public class HillClimbing implements InterfaceOptimizer, java.io.Serializable {
|
|
// These variables are necessary for the simple testcase
|
|
private InterfaceOptimizationProblem m_Problem = new B1Problem();
|
|
private InterfaceMutation mutator = null;
|
|
// private int m_MultiRuns = 100;
|
|
// private int m_FitnessCalls = 100;
|
|
// private int m_FitnessCallsNeeded = 0;
|
|
// GAIndividualBinaryData m_Best, m_Test;
|
|
|
|
// These variables are necessary for the more complex LectureGUI enviroment
|
|
transient private String m_Identifier = "";
|
|
transient private InterfacePopulationChangedEventListener m_Listener;
|
|
private Population m_Population;
|
|
|
|
public HillClimbing() {
|
|
this.m_Population = new Population();
|
|
this.m_Population.setPopulationSize(10);
|
|
}
|
|
|
|
public HillClimbing(HillClimbing a) {
|
|
this.m_Population = (Population)a.m_Population.clone();
|
|
this.m_Problem = (InterfaceOptimizationProblem)a.m_Problem.clone();
|
|
}
|
|
|
|
public Object clone() {
|
|
return (Object) new HillClimbing(this);
|
|
}
|
|
|
|
/** This method will init the HillClimber
|
|
*/
|
|
public void init() {
|
|
this.m_Problem.initPopulation(this.m_Population);
|
|
this.m_Problem.evaluate(this.m_Population);
|
|
this.firePropertyChangedEvent("NextGenerationPerformed");
|
|
}
|
|
|
|
/** This method will init the optimizer with a given population
|
|
* @param pop The initial population
|
|
* @param reset If true the population is reset.
|
|
*/
|
|
public void initByPopulation(Population pop, boolean reset) {
|
|
this.m_Population = (Population)pop.clone();
|
|
if (reset) this.m_Population.init();
|
|
this.m_Problem.evaluate(this.m_Population);
|
|
this.firePropertyChangedEvent("NextGenerationPerformed");
|
|
}
|
|
|
|
/** This method will optimize
|
|
*/
|
|
public void optimize() {
|
|
AbstractEAIndividual indy;
|
|
Population original = (Population)this.m_Population.clone();
|
|
double tmpD;
|
|
InterfaceMutation tmpMut;
|
|
|
|
for (int i = 0; i < this.m_Population.size(); i++) {
|
|
indy = ((AbstractEAIndividual) this.m_Population.get(i));
|
|
tmpD = indy.getMutationProbability();
|
|
indy.setMutationProbability(1.0);
|
|
if (mutator == null) indy.mutate();
|
|
else mutator.mutate(indy);
|
|
indy.setMutationProbability(tmpD);
|
|
}
|
|
this.m_Problem.evaluate(this.m_Population);
|
|
for (int i = 0; i < this.m_Population.size(); i++) {
|
|
if (((AbstractEAIndividual)original.get(i)).isDominatingDebConstraints(((AbstractEAIndividual)this.m_Population.get(i)))) {
|
|
this.m_Population.remove(i);
|
|
this.m_Population.add(i, original.get(i));
|
|
} // else: mutation improved the individual
|
|
}
|
|
this.m_Population.incrGeneration();
|
|
// for (int i = 0; i < this.m_Population.size(); i++) {
|
|
// indy1 = (AbstractEAIndividual) this.m_Population.get(i);
|
|
// indy2 = (AbstractEAIndividual)(indy1).clone();
|
|
// indy2.mutate();
|
|
// this.m_Problem.evaluate((AbstractEAIndividual) indy2);
|
|
// //indy2.SetFitness(0, indy2.evaulateAsMiniBits());
|
|
// this.m_Population.incrFunctionCalls();
|
|
// //if (indy2.getFitness(0) < indy1.getFitness(0)) {
|
|
// if (indy2.isDominating(indy1)) {
|
|
// this.m_Population.remove(i);
|
|
// this.m_Population.add(i, indy2);
|
|
// }
|
|
// }
|
|
// this.m_Population.incrGeneration();
|
|
this.firePropertyChangedEvent("NextGenerationPerformed");
|
|
}
|
|
|
|
public InterfaceMutation getMutationOperator() {
|
|
return mutator;
|
|
}
|
|
|
|
/**
|
|
* Allows to set a desired mutator by hand, which is used instead of the one in the individuals.
|
|
* Set it to null to use the one in the individuals, which is the default.
|
|
*
|
|
* @param mute
|
|
*/
|
|
public void SetMutationOperator(InterfaceMutation mute) {
|
|
mutator = mute;
|
|
}
|
|
|
|
/** This method will set the problem that is to be optimized
|
|
* @param problem
|
|
*/
|
|
public void SetProblem (InterfaceOptimizationProblem problem) {
|
|
this.m_Problem = problem;
|
|
}
|
|
public InterfaceOptimizationProblem getProblem () {
|
|
return this.m_Problem;
|
|
}
|
|
|
|
// /** This method will init the HillClimber
|
|
// */
|
|
// public void defaultInit() {
|
|
// this.m_FitnessCallsNeeded = 0;
|
|
// this.m_Best = new GAIndividualBinaryData();
|
|
// this.m_Best.defaultInit();
|
|
// }
|
|
//
|
|
// /** This method will optimize
|
|
// */
|
|
// public void defaultOptimize() {
|
|
// for (int i = 0; i < m_FitnessCalls; i++) {
|
|
// this.m_Test = (GAIndividualBinaryData)((this.m_Best).clone());
|
|
// this.m_Test.defaultMutate();
|
|
// if (this.m_Test.defaultEvaulateAsMiniBits() < this.m_Best.defaultEvaulateAsMiniBits()) this.m_Best = this.m_Test;
|
|
// this.m_FitnessCallsNeeded = i;
|
|
// if (this.m_Best.defaultEvaulateAsMiniBits() == 0) i = this.m_FitnessCalls +1;
|
|
// }
|
|
// }
|
|
|
|
// /** This main method will start a simple hillclimber.
|
|
// * No arguments necessary.
|
|
// * @param args
|
|
// */
|
|
// public static void main(String[] args) {
|
|
// HillClimbing program = new HillClimbing();
|
|
// int TmpMeanCalls = 0, TmpMeanFitness = 0;
|
|
// for (int i = 0; i < program.m_MultiRuns; i++) {
|
|
// program.defaultInit();
|
|
// program.defaultOptimize();
|
|
// TmpMeanCalls += program.m_FitnessCallsNeeded;
|
|
// TmpMeanFitness += program.m_Best.defaultEvaulateAsMiniBits();
|
|
// }
|
|
// TmpMeanCalls = TmpMeanCalls/program.m_MultiRuns;
|
|
// TmpMeanFitness = TmpMeanFitness/program.m_MultiRuns;
|
|
// System.out.println("("+program.m_MultiRuns+"/"+program.m_FitnessCalls+") Mean Fitness : " + TmpMeanFitness + " Mean Calls needed: " + TmpMeanCalls);
|
|
// }
|
|
|
|
/** This method allows you to add the LectureGUI as listener to the Optimizer
|
|
* @param ea
|
|
*/
|
|
public void addPopulationChangedEventListener(InterfacePopulationChangedEventListener ea) {
|
|
this.m_Listener = ea;
|
|
}
|
|
/** Something has changed
|
|
*/
|
|
protected void firePropertyChangedEvent (String name) {
|
|
if (this.m_Listener != null) this.m_Listener.registerPopulationStateChanged(this, name);
|
|
}
|
|
|
|
/** This method will return a string describing all properties of the optimizer
|
|
* and the applied methods.
|
|
* @return A descriptive string
|
|
*/
|
|
public String getStringRepresentation() {
|
|
String result = "";
|
|
if (this.m_Population.size() > 1) result += "Multi(" + this.m_Population.size() + ")-Start Hill Climbing:\n";
|
|
else result += "Hill Climbing:\n";
|
|
result += "Optimization Problem: ";
|
|
result += this.m_Problem.getStringRepresentationForProblem(this) +"\n";
|
|
result += this.m_Population.getStringRepresentation();
|
|
return result;
|
|
}
|
|
/** This method allows you to set an identifier for the algorithm
|
|
* @param name The indenifier
|
|
*/
|
|
public void SetIdentifier(String name) {
|
|
this.m_Identifier = name;
|
|
}
|
|
public String getIdentifier() {
|
|
return this.m_Identifier;
|
|
}
|
|
|
|
/** This method is required to free the memory on a RMIServer,
|
|
* but there is nothing to implement.
|
|
*/
|
|
public void freeWilly() {
|
|
|
|
}
|
|
/**********************************************************************************************************************
|
|
* These are for GUI
|
|
*/
|
|
/** This method returns a global info string
|
|
* @return description
|
|
*/
|
|
public String globalInfo() {
|
|
return "The Hill Climber uses the default EA mutation and initializing operators. If the population size is bigger than one a multi-start Hill Climber is performed.";
|
|
}
|
|
/** This method will return a naming String
|
|
* @return The name of the algorithm
|
|
*/
|
|
public String getName() {
|
|
return "MS-HC";
|
|
}
|
|
public Population getPopulation() {
|
|
return this.m_Population;
|
|
}
|
|
public void setPopulation(Population pop){
|
|
this.m_Population = pop;
|
|
}
|
|
|
|
public Population getAllSolutions() {
|
|
return getPopulation();
|
|
}
|
|
public String populationTipText() {
|
|
return "Change the number of best individuals stored (MS-HC).";
|
|
}
|
|
} |