eva2/src/javaeva/server/go/strategies/ThresholdAlgorithm.java
2008-03-11 10:57:37 +00:00

262 lines
9.6 KiB
Java

package javaeva.server.go.strategies;
import javaeva.server.go.InterfacePopulationChangedEventListener;
import javaeva.server.go.individuals.AbstractEAIndividual;
import javaeva.server.go.individuals.GAIndividualBinaryData;
import javaeva.server.go.populations.Population;
import javaeva.server.go.problems.B1Problem;
import javaeva.server.go.problems.InterfaceOptimizationProblem;
import javaeva.server.go.tools.RandomNumberGenerator;
/** Threshold accepting algorithm simliar strategy as the flood
* algorithm, similar problems.
* Created by IntelliJ IDEA.
* User: streiche
* Date: 01.10.2004
* Time: 13:35:49
* To change this template use File | Settings | File Templates.
*/
public class ThresholdAlgorithm implements InterfaceOptimizer, java.io.Serializable {
// These variables are necessary for the simple testcase
private InterfaceOptimizationProblem m_Problem = new B1Problem();
private int m_MultiRuns = 100;
private int m_FitnessCalls = 100;
private int m_FitnessCallsNeeded = 0;
GAIndividualBinaryData m_Best, m_Test;
public double m_InitialT = 2, m_CurrentT;
public double m_Alpha = 0.9;
// These variables are necessary for the more complex LectureGUI enviroment
transient private String m_Identifier = "";
transient private InterfacePopulationChangedEventListener m_Listener;
private Population m_Population;
public ThresholdAlgorithm() {
this.m_Population = new Population();
this.m_Population.setPopulationSize(10);
}
public ThresholdAlgorithm(ThresholdAlgorithm a) {
this.m_Population = (Population)a.m_Population.clone();
this.m_Problem = (InterfaceOptimizationProblem)a.m_Problem.clone();
this.m_InitialT = a.m_InitialT;
this.m_CurrentT = a.m_CurrentT;
this.m_Alpha = a.m_Alpha;
}
public Object clone() {
return (Object) new ThresholdAlgorithm(this);
}
/** This method will init the HillClimber
*/
public void init() {
this.m_Problem.initPopulation(this.m_Population);
this.m_Problem.evaluate(this.m_Population);
this.m_CurrentT = this.m_InitialT;
this.firePropertyChangedEvent("NextGenerationPerformed");
}
/** This method will init the optimizer with a given population
* @param pop The initial population
* @param reset If true the population is reset.
*/
public void initByPopulation(Population pop, boolean reset) {
this.m_Population = (Population)pop.clone();
if (reset) this.m_Population.init();
this.m_Problem.evaluate(this.m_Population);
this.m_CurrentT = this.m_InitialT;
this.firePropertyChangedEvent("NextGenerationPerformed");
}
/** This method will optimize
*/
public void optimize() {
AbstractEAIndividual indy;
Population original = (Population)this.m_Population.clone();
double delta;
for (int i = 0; i < this.m_Population.size(); i++) {
indy = ((AbstractEAIndividual) this.m_Population.get(i));
double tmpD = indy.getMutationProbability();
indy.setMutationProbability(1.0);
indy.mutate();
indy.setMutationProbability(tmpD);
}
this.m_Problem.evaluate(this.m_Population);
for (int i = 0; i < this.m_Population.size(); i++) {
delta = this.calculateDelta(((AbstractEAIndividual)original.get(i)), ((AbstractEAIndividual)this.m_Population.get(i)));
if (delta < this.m_CurrentT) {
this.m_Population.remove(i);
this.m_Population.add(i, original.get(i));
}
}
this.m_CurrentT = this.m_Alpha * this.m_CurrentT;
this.m_Population.incrGeneration();
this.firePropertyChangedEvent("NextGenerationPerformed");
}
/** This method calculates the difference between the fitness values
* @param org The original
* @param mut The mutant
*/
private double calculateDelta(AbstractEAIndividual org, AbstractEAIndividual mut) {
double result = 0;
double[] fitOrg, fitMut;
fitOrg = org.getFitness();
fitMut = mut.getFitness();
for (int i = 0; i < fitOrg.length; i++) {
result += fitOrg[i] - fitMut[i];
}
return result;
}
/** This method will set the problem that is to be optimized
* @param problem
*/
public void SetProblem (InterfaceOptimizationProblem problem) {
this.m_Problem = problem;
}
public InterfaceOptimizationProblem getProblem () {
return this.m_Problem;
}
/** This method will init the HillClimber
*/
public void defaultInit() {
this.m_FitnessCallsNeeded = 0;
this.m_Best = new GAIndividualBinaryData();
this.m_Best.defaultInit();
}
/** This method will optimize
*/
public void defaultOptimize() {
for (int i = 0; i < m_FitnessCalls; i++) {
this.m_Test = (GAIndividualBinaryData)((this.m_Best).clone());
this.m_Test.defaultMutate();
if (this.m_Test.defaultEvaulateAsMiniBits() < this.m_Best.defaultEvaulateAsMiniBits()) this.m_Best = this.m_Test;
this.m_FitnessCallsNeeded = i;
if (this.m_Best.defaultEvaulateAsMiniBits() == 0) i = this.m_FitnessCalls +1;
}
}
/** This main method will start a simple hillclimber.
* No arguments necessary.
* @param args
*/
public static void main(String[] args) {
ThresholdAlgorithm program = new ThresholdAlgorithm();
int TmpMeanCalls = 0, TmpMeanFitness = 0;
for (int i = 0; i < program.m_MultiRuns; i++) {
program.defaultInit();
program.defaultOptimize();
TmpMeanCalls += program.m_FitnessCallsNeeded;
TmpMeanFitness += program.m_Best.defaultEvaulateAsMiniBits();
}
TmpMeanCalls = TmpMeanCalls/program.m_MultiRuns;
TmpMeanFitness = TmpMeanFitness/program.m_MultiRuns;
System.out.println("("+program.m_MultiRuns+"/"+program.m_FitnessCalls+") Mean Fitness : " + TmpMeanFitness + " Mean Calls needed: " + TmpMeanCalls);
}
/** This method allows you to add the LectureGUI as listener to the Optimizer
* @param ea
*/
public void addPopulationChangedEventListener(InterfacePopulationChangedEventListener ea) {
this.m_Listener = ea;
}
/** Something has changed
*/
protected void firePropertyChangedEvent (String name) {
if (this.m_Listener != null) this.m_Listener.registerPopulationStateChanged(this, name);
}
/** This method will return a string describing all properties of the optimizer
* and the applied methods.
* @return A descriptive string
*/
public String getStringRepresentation() {
String result = "";
if (this.m_Population.size() > 1) result += "Multi(" + this.m_Population.size() + ")-Start Hill Climbing:\n";
else result += "Threshold Algorithm:\n";
result += "Optimization Problem: ";
result += this.m_Problem.getStringRepresentationForProblem(this) +"\n";
result += this.m_Population.getStringRepresentation();
return result;
}
/** This method allows you to set an identifier for the algorithm
* @param name The indenifier
*/
public void SetIdentifier(String name) {
this.m_Identifier = name;
}
public String getIdentifier() {
return this.m_Identifier;
}
/** This method is required to free the memory on a RMIServer,
* but there is nothing to implement.
*/
public void freeWilly() {
}
/**********************************************************************************************************************
* These are for GUI
*/
/** This method returns a global info string
* @return description
*/
public String globalInfo() {
return "The threshold algorithm uses an declining threshold to accpect new solutions.";
}
/** This method will return a naming String
* @return The name of the algorithm
*/
public String getName() {
return "MS-TA";
}
/** Assuming that all optimizer will store thier data in a population
* we will allow acess to this population to query to current state
* of the optimizer.
* @return The population of current solutions to a given problem.
*/
public Population getPopulation() {
return this.m_Population;
}
public void setPopulation(Population pop){
this.m_Population = pop;
}
public String populationTipText() {
return "Change the number of best individuals stored (MS-TA).";
}
public Population getAllSolutions() {
return getPopulation();
}
/** Set the initial threshold
* @return The initial temperature.
*/
public double getInitialT() {
return this.m_InitialT;
}
public void setInitialT(double pop){
this.m_InitialT = pop;
}
public String initialTTipText() {
return "Set the initial threshold.";
}
/** Set alpha, which is used to degrade the threshold
* @return The initial temperature.
*/
public double getAlpha() {
return this.m_Alpha;
}
public void setAlpha(double a){
this.m_Alpha = a;
if (this.m_Alpha > 1) this.m_Alpha = 1.0;
}
public String alphaTipText() {
return "Set alpha, which is used to degrade the threshold.";
}
}