Switched from Ant to Maven. Usage: - Install Maven 3.x - Enter directory with pom.xml - Type mvn compile - Enjoy!
		
			
				
	
	
		
			31 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			31 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
<html>
 | 
						|
<head>
 | 
						|
<title>Schwefels's (sine root) function</title>
 | 
						|
</head>
 | 
						|
<body>
 | 
						|
<h1 align="center">Schwefel's (sine root) function</h1>
 | 
						|
<center>
 | 
						|
<img src="images/f13-tex-500.jpg" width="650" height="64" aling="center">
 | 
						|
</center>
 | 
						|
<p>
 | 
						|
Schwefel's (sine root) function is highly multimodal and has no global basin of attraction. The optimum at a fitness of f(x*)=0 lies at x*=420.9687. Schwefel's sine root is a tough challenge for any global optimizer due to the multiple distinct optima. Especially, there is a deceptive nearly optimal solution close to x=(-420.9687)<SUP>n</SUP>.
 | 
						|
 | 
						|
<p>
 | 
						|
 | 
						|
<p>
 | 
						|
 | 
						|
<img src="images/f13-schwefels-sine-root.jpg" width="667" height="493" border="2" align="center">
 | 
						|
<br>
 | 
						|
Schwefels's sine root function in 2D within the co-domain -500 <= <i>x</i> <= 500.
 | 
						|
<p>
 | 
						|
 | 
						|
<hr>
 | 
						|
More information about Ackley's function can be found at:
 | 
						|
<p>
 | 
						|
David. H. Ackley. <i>A connection machine for genetic hillclimbing.</i> Kluwer Academic Publishers, Boston, 1987.
 | 
						|
<p>
 | 
						|
Thomas Baeck. <i>Evolutionary Algorithms in Theory and Practice.</i> Oxford University Press, 1996.
 | 
						|
 | 
						|
</body>
 | 
						|
</html> 
 |