eva2/src/javaeva/server/modules/PBILParameters.java
Marcel Kronfeld 1e8b14b0f1 Cosmetics
2007-12-17 14:05:52 +00:00

282 lines
9.7 KiB
Java

package javaeva.server.modules;
import javaeva.server.go.InterfaceGOParameters;
import javaeva.server.go.InterfacePopulationChangedEventListener;
import javaeva.server.go.TerminatorInterface;
import javaeva.server.go.operators.selection.InterfaceSelection;
import javaeva.server.go.operators.terminators.EvaluationTerminator;
import javaeva.server.go.populations.Population;
import javaeva.server.go.problems.B1Problem;
import javaeva.server.go.problems.InterfaceOptimizationProblem;
import javaeva.server.go.strategies.InterfaceOptimizer;
import javaeva.server.go.strategies.MonteCarloSearch;
import javaeva.server.go.strategies.PopulationBasedIncrementalLearning;
import javaeva.tools.Serializer;
import java.io.Serializable;
/** The class gives access to all PBIL parameters for the JavaEvA
* top level GUI.
* Created by IntelliJ IDEA.
* User: streiche
* Date: 08.06.2004
* Time: 21:53:29
* To change this template use File | Settings | File Templates.
*/
public class PBILParameters implements InterfaceGOParameters, Serializable {
public static boolean TRACE = false;
private String m_Name ="not defined";
private long m_Seed = (long)100.0;
// Opt. Algorithms and Parameters
private InterfaceOptimizer m_Optimizer = new PopulationBasedIncrementalLearning();
private InterfaceOptimizationProblem m_Problem = new B1Problem();
//private int m_FunctionCalls = 1000;
private TerminatorInterface m_Terminator = new EvaluationTerminator();
private String m_OutputFileName = "none";
transient private InterfacePopulationChangedEventListener m_Listener;
/**
*
*/
public static PBILParameters getInstance() {
if (TRACE) System.out.println("PBILParameters getInstance 1");
PBILParameters Instance = (PBILParameters) Serializer.loadObject("PBILParameters.ser");
if (TRACE) System.out.println("PBILParameters getInstance 2");
if (Instance == null) Instance = new PBILParameters();
return Instance;
}
/**
*
*/
public void saveInstance() {
Serializer.storeObject("PBILParameters.ser",this);
}
/**
*
*/
public PBILParameters() {
if (TRACE) System.out.println("PBILParameters Constructor start");
this.m_Name="Optimization parameters";
this.m_Optimizer = new PopulationBasedIncrementalLearning();
this.m_Problem = new B1Problem();
//this.m_FunctionCalls = 1000;
((EvaluationTerminator)this.m_Terminator).setFitnessCalls(1000);
this.m_Optimizer.SetProblem(this.m_Problem);
if (TRACE) System.out.println("PBILParameters Constructor end");
}
/**
*
*/
private PBILParameters(PBILParameters Source) {
this.m_Name = Source.m_Name;
this.m_Optimizer = Source.m_Optimizer;
this.m_Problem = Source.m_Problem;
this.m_Terminator = Source.m_Terminator;
//this.m_FunctionCalls = Source.m_FunctionCalls;
this.m_Optimizer.SetProblem(this.m_Problem);
this.m_Seed = Source.m_Seed;
}
/**
*
*/
public String getName() {
return m_Name;
}
/**
*
*/
public Object clone() {
return new PBILParameters(this);
}
/** This method allows you to add the LectureGUI as listener to the Optimizer
* @param ea
*/
public void addPopulationChangedEventListener(InterfacePopulationChangedEventListener ea) {
this.m_Listener = ea;
if (this.m_Optimizer != null) this.m_Optimizer.addPopulationChangedEventListener(this.m_Listener);
}
/**
*
*/
public String toString() {
String ret = "\r\nGO-Parameter:"+this.m_Problem.getStringRepresentationForProblem(this.m_Optimizer)+"\n"+this.m_Optimizer.getStringRepresentation();
return ret;
}
/** This method returns a global info string
* @return description
*/
public String globalInfo() {
return ((PopulationBasedIncrementalLearning)this.m_Optimizer).globalInfo();
}
/** This methods allow you to set and get the Seed for the Random Number Generator.
* @param x Long seed.
*/
public void setSeed(long x) {
m_Seed = x;
}
public long getSeed() {
return m_Seed;
}
public String seedTipText() {
return "Random number seed.";
}
/** This method allows you to set the current optimizing algorithm
* @param optimizer The new optimizing algorithm
*/
public void setOptimizer(InterfaceOptimizer optimizer) {
// i'm a Monte Carlo Search Algorithm
// *pff* i'll ignore that!
}
public InterfaceOptimizer getOptimizer() {
return this.m_Optimizer;
}
/** This method allows you to choose a termination criteria for the
* evolutionary algorithm.
* @param term The new terminator
*/
public void setTerminator(TerminatorInterface term) {
this.m_Terminator = term;
}
public TerminatorInterface getTerminator() {
return this.m_Terminator;
}
public String terminatorTipText() {
return "Choose a termination criterion.";
}
/** This method will set the problem that is to be optimized
* @param problem
*/
public void setProblem (InterfaceOptimizationProblem problem) {
this.m_Problem = problem;
this.m_Optimizer.SetProblem(this.m_Problem);
}
public InterfaceOptimizationProblem getProblem() {
return this.m_Problem;
}
public String problemTipText() {
return "Choose the problem that is to optimize and the EA individual parameters.";
}
/** This method will set the output filename
* @param name
*/
public void setOutputFileName (String name) {
this.m_OutputFileName = name;
}
public String getOutputFileName () {
return this.m_OutputFileName;
}
public String outputFileNameTipText() {
return "Set the name for the output file, if 'none' no output file will be created.";
}
/** Assuming that all optimizer will store thier data in a population
* we will allow acess to this population to query to current state
* of the optimizer.
* @return The population of current solutions to a given problem.
*/
public Population getPopulation() {
return ((PopulationBasedIncrementalLearning)this.m_Optimizer).getPopulation();
}
public void setPopulation(Population pop){
((PopulationBasedIncrementalLearning)this.m_Optimizer).setPopulation(pop);
}
public String populationTipText() {
return "Edit the properties of the population used.";
}
/** This method will set the selection method that is to be used
* @param selection
*/
public void setSelectionMethod(InterfaceSelection selection) {
((PopulationBasedIncrementalLearning)this.m_Optimizer).setSelectionMethod(selection);
}
public InterfaceSelection getSelectionMethod() {
return ((PopulationBasedIncrementalLearning)this.m_Optimizer).getSelectionMethod();
}
public String selectionMethodTipText() {
return "Choose a selection method.";
}
/** Enable/disable elitism.
* @param elitism
*/
public void setElitism (boolean elitism) {
((PopulationBasedIncrementalLearning)this.m_Optimizer).setElitism(elitism);
}
public boolean getElitism() {
return ((PopulationBasedIncrementalLearning)this.m_Optimizer).getElitism();
}
public String elitismTipText() {
return "Enable/disable elitism.";
}
/** This method will set the learning rate for PBIL
* @param LearningRate
*/
public void setLearningRate (double LearningRate) {
if (LearningRate < 0) LearningRate = 0;
((PopulationBasedIncrementalLearning)this.m_Optimizer).setLearningRate(LearningRate);
}
public double getLearningRate() {
return ((PopulationBasedIncrementalLearning)this.m_Optimizer).getLearningRate();
}
public String learningRateTipText() {
return "The learing rate of PBIL.";
}
/** This method will set the mutation rate for PBIL
* @param m
*/
public void setMutationRate (double m) {
if (m < 0) m = 0;
if (m > 1) m = 1;
((PopulationBasedIncrementalLearning)this.m_Optimizer).setMutationRate(m);
}
public double getMutationRate() {
return ((PopulationBasedIncrementalLearning)this.m_Optimizer).getMutationRate();
}
public String mutationRateTipText() {
return "The mutation rate of PBIL.";
}
/** This method will set the mutation sigma for PBIL
* @param m
*/
public void setMutateSigma (double m) {
if (m < 0) m = 0;
((PopulationBasedIncrementalLearning)this.m_Optimizer).setMutateSigma(m);
}
public double getMutateSigma() {
return ((PopulationBasedIncrementalLearning)this.m_Optimizer).getMutateSigma();
}
public String mutateSigmaTipText() {
return "Set the sigma for the mutation of the probability vector.";
}
/** This method will set the number of positive samples for PBIL
* @param PositiveSamples
*/
public void setPositiveSamples (int PositiveSamples) {
if (PositiveSamples < 1) PositiveSamples = 1;
((PopulationBasedIncrementalLearning)this.m_Optimizer).setPositiveSamples(PositiveSamples);
}
public int getPositiveSamples() {
return ((PopulationBasedIncrementalLearning)this.m_Optimizer).getPositiveSamples();
}
public String positiveSamplesTipText() {
return "The number of positive samples that update the PBIL vector.";
}
}