eva2/src/javaeva/server/modules/DEParameters.java
2008-02-26 17:31:52 +00:00

251 lines
8.4 KiB
Java

package javaeva.server.modules;
import javaeva.server.go.InterfaceGOParameters;
import javaeva.server.go.InterfacePopulationChangedEventListener;
import javaeva.server.go.InterfaceTerminator;
import javaeva.server.go.operators.selection.InterfaceSelection;
import javaeva.server.go.operators.terminators.EvaluationTerminator;
import javaeva.server.go.populations.Population;
import javaeva.server.go.problems.F1Problem;
import javaeva.server.go.problems.InterfaceOptimizationProblem;
import javaeva.server.go.strategies.DifferentialEvolution;
import javaeva.server.go.strategies.GeneticAlgorithm;
import javaeva.server.go.strategies.InterfaceOptimizer;
import javaeva.tools.Serializer;
import javaeva.tools.SelectedTag;
import java.io.Serializable;
/** The class gives access to all DE parameters for the JavaEvA
* top level GUI.
* Created by IntelliJ IDEA.
* User: streiche
* Date: 27.10.2004
* Time: 13:49:09
* To change this template use File | Settings | File Templates.
*/
public class DEParameters implements InterfaceGOParameters, Serializable {
public static boolean TRACE = false;
private String m_Name ="not defined";
private long m_Seed = (long)100.0;
// Opt. Algorithms and Parameters
private InterfaceOptimizer m_Optimizer = new DifferentialEvolution();
private InterfaceOptimizationProblem m_Problem = new F1Problem();
//private int m_FunctionCalls = 1000;
private InterfaceTerminator m_Terminator = new EvaluationTerminator();
// private String m_OutputFileName = "none";
transient private InterfacePopulationChangedEventListener m_Listener;
/**
*
*/
public static DEParameters getInstance() {
if (TRACE) System.out.println("DEParameters getInstance 1");
DEParameters Instance = (DEParameters) Serializer.loadObject("DEParameters.ser");
if (TRACE) System.out.println("DEParameters getInstance 2");
if (Instance == null) Instance = new DEParameters();
return Instance;
}
/**
*
*/
public void saveInstance() {
Serializer.storeObject("DEParameters.ser",this);
}
/**
*
*/
public DEParameters() {
if (TRACE) System.out.println("DEParameters Constructor start");
this.m_Name="Optimization parameters";
this.m_Optimizer = new DifferentialEvolution();
this.m_Problem = new F1Problem();
//this.m_FunctionCalls = 1000;
((EvaluationTerminator)this.m_Terminator).setFitnessCalls(1000);
this.m_Optimizer.SetProblem(this.m_Problem);
if (TRACE) System.out.println("DEParameters Constructor end");
}
/**
*
*/
private DEParameters(DEParameters Source) {
this.m_Name = Source.m_Name;
this.m_Optimizer = Source.m_Optimizer;
this.m_Problem = Source.m_Problem;
this.m_Terminator = Source.m_Terminator;
//this.m_FunctionCalls = Source.m_FunctionCalls;
this.m_Optimizer.SetProblem(this.m_Problem);
this.m_Seed = Source.m_Seed;
}
/**
*
*/
public String getName() {
return m_Name;
}
/**
*
*/
public Object clone() {
return new DEParameters(this);
}
/** This method allows you to add the LectureGUI as listener to the Optimizer
* @param ea
*/
public void addPopulationChangedEventListener(InterfacePopulationChangedEventListener ea) {
this.m_Listener = ea;
if (this.m_Optimizer != null) this.m_Optimizer.addPopulationChangedEventListener(this.m_Listener);
}
/**
*
*/
public String toString() {
String ret = "\r\nDE-Parameter:"+this.m_Problem.getStringRepresentationForProblem(this.m_Optimizer)+"\n"+this.m_Optimizer.getStringRepresentation();
return ret;
}
/** This method returns a global info string
* @return description
*/
public String globalInfo() {
return "This is a Differential Evolution optimization method, please limit DE to real-valued genotypes.";
}
/** This methods allow you to set and get the Seed for the Random Number Generator.
* @param x Long seed.
*/
public void setSeed(long x) {
m_Seed = x;
}
public long getSeed() {
return m_Seed;
}
public String seedTipText() {
return "Random number seed.";
}
/** This method allows you to set the current optimizing algorithm
* @param optimizer The new optimizing algorithm
*/
public void setOptimizer(InterfaceOptimizer optimizer) {
// i'm a Monte Carlo Search Algorithm
// *pff* i'll ignore that!
}
public InterfaceOptimizer getOptimizer() {
return this.m_Optimizer;
}
/** This method allows you to choose a termination criteria for the
* evolutionary algorithm.
* @param term The new terminator
*/
public void setTerminator(InterfaceTerminator term) {
this.m_Terminator = term;
}
public InterfaceTerminator getTerminator() {
return this.m_Terminator;
}
public String terminatorTipText() {
return "Choose a termination criterion.";
}
/** This method will set the problem that is to be optimized
* @param problem
*/
public void setProblem (InterfaceOptimizationProblem problem) {
this.m_Problem = problem;
this.m_Optimizer.SetProblem(this.m_Problem);
}
public InterfaceOptimizationProblem getProblem() {
return this.m_Problem;
}
public String problemTipText() {
return "Choose the problem that is to optimize and the EA individual parameters.";
}
/** This method will set the output filename
* @param name
*/
// public void setOutputFileName (String name) {
// this.m_OutputFileName = name;
// }
// public String getOutputFileName () {
// return this.m_OutputFileName;
// }
// public String outputFileNameTipText() {
// return "Set the name for the output file, if 'none' no output file will be created.";
// }
/** Assuming that all optimizer will store thier data in a population
* we will allow acess to this population to query to current state
* of the optimizer.
* @return The population of current solutions to a given problem.
*/
public Population getPopulation() {
return ((DifferentialEvolution)this.m_Optimizer).getPopulation();
}
public void setPopulation(Population pop){
((DifferentialEvolution)this.m_Optimizer).setPopulation(pop);
}
public String populationTipText() {
return "Edit the properties of the population used.";
}
/** This method will set the amplication factor f
* @param f
*/
public void setF (double f) {
((DifferentialEvolution)this.m_Optimizer).setF(f);
}
public double getF() {
return ((DifferentialEvolution)this.m_Optimizer).getF();
}
public String fTipText() {
return "F is a real and constant factor which controlls the ampllification of the differential variation.";
}
/** This method will set the crossover probability
* @param k
*/
public void setK(double k) {
((DifferentialEvolution)this.m_Optimizer).setK(k);
}
public double getK() {
return ((DifferentialEvolution)this.m_Optimizer).getK();
}
public String kTipText() {
return "Probability of alteration through DE1.";
}
/** This method will set greediness to move towards the best
* @param l
*/
public void setLambda (double l) {
((DifferentialEvolution)this.m_Optimizer).setLambda(l);
}
public double getLambda() {
return ((DifferentialEvolution)this.m_Optimizer).getLambda();
}
public String lambdaTipText() {
return "Enhance greediness through amplification of the differential vector to the best individual for DE2.";
}
/** This method allows you to choose the type of Differential Evolution.
* @param s The type.
*/
public void setDEType(SelectedTag s) {
((DifferentialEvolution)this.m_Optimizer).setDEType(s);
}
public SelectedTag getDEType() {
return ((DifferentialEvolution)this.m_Optimizer).getDEType();
}
public String dETypeTipText() {
return "Choose the type of Differential Evolution.";
}
}