closes #9 - Remove all remaining globalInfo methods. - Remove globalInfo handling. - WIN.
228 lines
8.0 KiB
Java
228 lines
8.0 KiB
Java
package eva2.optimization.operator.crossover;
|
|
|
|
import eva2.gui.plot.Plot;
|
|
import eva2.optimization.individuals.AbstractEAIndividual;
|
|
import eva2.optimization.individuals.ESIndividualDoubleData;
|
|
import eva2.optimization.individuals.InterfaceESIndividual;
|
|
import eva2.optimization.population.Population;
|
|
import eva2.problems.F1Problem;
|
|
import eva2.problems.InterfaceOptimizationProblem;
|
|
import eva2.tools.math.RNG;
|
|
import eva2.util.annotation.Description;
|
|
|
|
/**
|
|
*
|
|
*/
|
|
@Description("The SBX crossover simulates a binary crossover (works only for two partners!).")
|
|
public class CrossoverESSBX implements InterfaceCrossover, java.io.Serializable {
|
|
|
|
private InterfaceOptimizationProblem optimizationProblem;
|
|
private double eta = 0.2;
|
|
|
|
public CrossoverESSBX() {
|
|
|
|
}
|
|
|
|
public CrossoverESSBX(double eta) {
|
|
this.eta = eta;
|
|
}
|
|
|
|
public CrossoverESSBX(CrossoverESSBX c) {
|
|
this.optimizationProblem = c.optimizationProblem;
|
|
this.eta = c.eta;
|
|
}
|
|
|
|
/**
|
|
* This method will enable you to clone a given mutation operator
|
|
*
|
|
* @return The clone
|
|
*/
|
|
@Override
|
|
public Object clone() {
|
|
return new CrossoverESSBX(this);
|
|
}
|
|
|
|
/**
|
|
* This method performs crossover on two individuals. If the individuals do
|
|
* not implement InterfaceGAIndividual, then nothing will happen.
|
|
*
|
|
* @param indy1 The first individual
|
|
* @param partners The second individual
|
|
*/
|
|
@Override
|
|
public AbstractEAIndividual[] mate(AbstractEAIndividual indy1, Population partners) {
|
|
AbstractEAIndividual[] result = null;
|
|
double[][] parents, children;
|
|
double beta, u;
|
|
|
|
result = new AbstractEAIndividual[partners.size() + 1];
|
|
result[0] = (AbstractEAIndividual) (indy1).clone();
|
|
for (int i = 0; i < partners.size(); i++) {
|
|
result[i + 1] = (AbstractEAIndividual) ((AbstractEAIndividual) partners.get(i)).clone();
|
|
}
|
|
//for (int i = 0; i < result.length; i++) System.out.println("Before Crossover: " +result[i].getSolutionRepresentationFor());
|
|
|
|
if ((indy1 instanceof InterfaceESIndividual) && (partners.get(0) instanceof InterfaceESIndividual)) {
|
|
parents = new double[partners.size() + 1][];
|
|
children = new double[partners.size() + 1][];
|
|
for (int i = 0; i < result.length; i++) {
|
|
parents[i] = new double[((InterfaceESIndividual) result[i]).getDGenotype().length];
|
|
children[i] = new double[parents[i].length];
|
|
System.arraycopy(((InterfaceESIndividual) result[i]).getDGenotype(), 0, parents[i], 0, parents[i].length);
|
|
System.arraycopy(((InterfaceESIndividual) result[i]).getDGenotype(), 0, children[i], 0, parents[i].length);
|
|
}
|
|
|
|
for (int i = 0; i < children[0].length; i++) {
|
|
u = RNG.randomDouble(0, 1);
|
|
if (u <= 0.5) {
|
|
beta = Math.pow((2 * u), 1 / (this.eta + 1));
|
|
} else {
|
|
beta = Math.pow((0.5 / (1 - u)), 1 / (this.eta + 1));
|
|
}
|
|
children[0][i] = 0.5 * ((1 + beta) * parents[0][i] + (1 - beta) * parents[1][i]);
|
|
children[1][i] = 0.5 * ((1 - beta) * parents[0][i] + (1 + beta) * parents[1][i]);
|
|
}
|
|
// write the result back
|
|
for (int i = 0; i < result.length; i++) {
|
|
((InterfaceESIndividual) result[i]).setDGenotype(children[i]);
|
|
}
|
|
}
|
|
//in case the crossover was successfull lets give the mutation operators a chance to mate the strategy parameters
|
|
for (int i = 0; i < result.length; i++) {
|
|
result[i].getMutationOperator().crossoverOnStrategyParameters(indy1, partners);
|
|
}
|
|
//for (int i = 0; i < result.length; i++) System.out.println("After Crossover: " +result[i].getSolutionRepresentationFor());
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* This method allows you to evaluate wether two crossover operators
|
|
* are actually the same.
|
|
*
|
|
* @param crossover The other crossover operator
|
|
*/
|
|
@Override
|
|
public boolean equals(Object crossover) {
|
|
if (crossover instanceof CrossoverESSBX) {
|
|
CrossoverESSBX cross = (CrossoverESSBX) crossover;
|
|
return this.eta == cross.eta;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* This method will allow the crossover operator to be initialized depending on the
|
|
* individual and the optimization problem. The optimization problem is to be stored
|
|
* since it is to be called during crossover to calculate the exogene parameters for
|
|
* the offsprings.
|
|
*
|
|
* @param individual The individual that will be mutated.
|
|
* @param opt The optimization problem.
|
|
*/
|
|
@Override
|
|
public void init(AbstractEAIndividual individual, InterfaceOptimizationProblem opt) {
|
|
this.optimizationProblem = opt;
|
|
}
|
|
|
|
public static void main(String[] args) {
|
|
Population pop = new Population();
|
|
double[] tmpD = new double[2];
|
|
ESIndividualDoubleData indy1, indy2, indy3;
|
|
F1Problem prob = new F1Problem();
|
|
|
|
// initialize individual
|
|
indy1 = new ESIndividualDoubleData();
|
|
double[][] range = new double[2][2];
|
|
range[0][0] = -2.0;
|
|
range[0][1] = 2.0;
|
|
range[1][0] = -2.0;
|
|
range[1][1] = 2.0;
|
|
indy1.setDoubleDataLength(2);
|
|
indy1.setDoubleRange(range);
|
|
// initialize values
|
|
indy2 = (ESIndividualDoubleData) indy1.clone();
|
|
indy3 = (ESIndividualDoubleData) indy1.clone();
|
|
if (false) {
|
|
// random initialize
|
|
indy1.defaultInit(prob);
|
|
indy2.defaultInit(prob);
|
|
indy3.defaultInit(prob);
|
|
} else {
|
|
// value initialize
|
|
tmpD[0] = 0.5;
|
|
tmpD[1] = -0.5;
|
|
indy1.initByValue(tmpD, prob);
|
|
tmpD[0] = -0.5;
|
|
tmpD[1] = 0.5;
|
|
indy2.initByValue(tmpD, prob);
|
|
tmpD[0] = -0.5;
|
|
tmpD[1] = 1;
|
|
indy3.initByValue(tmpD, prob);
|
|
}
|
|
// set the parents
|
|
pop.add(indy2);
|
|
pop.add(indy3);
|
|
tmpD[0] = 1;
|
|
tmpD[1] = 1;
|
|
Plot plot = new Plot("SBX Test", "x", "y", true);
|
|
tmpD = indy1.getDoubleData();
|
|
plot.setUnconnectedPoint(tmpD[0], tmpD[1], 0);
|
|
tmpD = indy2.getDoubleData();
|
|
plot.setUnconnectedPoint(tmpD[0], tmpD[1], 0);
|
|
tmpD = indy3.getDoubleData();
|
|
plot.setUnconnectedPoint(tmpD[0], tmpD[1], 0);
|
|
plot.setUnconnectedPoint(-2, -2, 0);
|
|
plot.setUnconnectedPoint(2, 2, 0);
|
|
plot.setUnconnectedPoint(2, 2, 0);
|
|
|
|
CrossoverESSBX cross = new CrossoverESSBX();
|
|
cross.eta = 0.2;
|
|
AbstractEAIndividual[] offsprings;
|
|
for (int i = 0; i < 5000; i++) {
|
|
offsprings = cross.mate(indy1, pop);
|
|
for (int j = 0; j < offsprings.length; j++) {
|
|
tmpD = ((ESIndividualDoubleData) offsprings[j]).getDoubleData();
|
|
plot.setUnconnectedPoint(tmpD[0], tmpD[1], 1);
|
|
//range = ((ESIndividualDoubleData)offsprings[j]).getDoubleRange();
|
|
//System.out.println("["+range[0][0]+"/"+range[0][1]+";"+range[1][0]+"/"+range[1][1]+"]");
|
|
}
|
|
}
|
|
}
|
|
|
|
@Override
|
|
public String getStringRepresentation() {
|
|
return this.getName();
|
|
}
|
|
|
|
/**
|
|
* This method allows the CommonJavaObjectEditorPanel to read the
|
|
* name to the current object.
|
|
*
|
|
* @return The name.
|
|
*/
|
|
public String getName() {
|
|
return "ES SBX crossover";
|
|
}
|
|
|
|
/**
|
|
* This method allows you to set the number of crossovers that occur in the
|
|
* genotype.
|
|
*
|
|
* @param a The number of crossovers.
|
|
*/
|
|
public void setEta(double a) {
|
|
if (a < 0) {
|
|
a = 0;
|
|
}
|
|
this.eta = a;
|
|
}
|
|
|
|
public double getEta() {
|
|
return this.eta;
|
|
}
|
|
|
|
public String etaTipText() {
|
|
return "Set the Eta_c value (the larger the value, the more restricted the search).";
|
|
}
|
|
} |