Files
eva2/src/eva2/optimization/operator/crossover/CrossoverESSBX.java
Fabian Becker 70dd824d13 Remove globalInfo completely
closes #9
- Remove all remaining globalInfo methods.
- Remove globalInfo handling.
- WIN.
2014-11-02 19:04:17 +01:00

228 lines
8.0 KiB
Java

package eva2.optimization.operator.crossover;
import eva2.gui.plot.Plot;
import eva2.optimization.individuals.AbstractEAIndividual;
import eva2.optimization.individuals.ESIndividualDoubleData;
import eva2.optimization.individuals.InterfaceESIndividual;
import eva2.optimization.population.Population;
import eva2.problems.F1Problem;
import eva2.problems.InterfaceOptimizationProblem;
import eva2.tools.math.RNG;
import eva2.util.annotation.Description;
/**
*
*/
@Description("The SBX crossover simulates a binary crossover (works only for two partners!).")
public class CrossoverESSBX implements InterfaceCrossover, java.io.Serializable {
private InterfaceOptimizationProblem optimizationProblem;
private double eta = 0.2;
public CrossoverESSBX() {
}
public CrossoverESSBX(double eta) {
this.eta = eta;
}
public CrossoverESSBX(CrossoverESSBX c) {
this.optimizationProblem = c.optimizationProblem;
this.eta = c.eta;
}
/**
* This method will enable you to clone a given mutation operator
*
* @return The clone
*/
@Override
public Object clone() {
return new CrossoverESSBX(this);
}
/**
* This method performs crossover on two individuals. If the individuals do
* not implement InterfaceGAIndividual, then nothing will happen.
*
* @param indy1 The first individual
* @param partners The second individual
*/
@Override
public AbstractEAIndividual[] mate(AbstractEAIndividual indy1, Population partners) {
AbstractEAIndividual[] result = null;
double[][] parents, children;
double beta, u;
result = new AbstractEAIndividual[partners.size() + 1];
result[0] = (AbstractEAIndividual) (indy1).clone();
for (int i = 0; i < partners.size(); i++) {
result[i + 1] = (AbstractEAIndividual) ((AbstractEAIndividual) partners.get(i)).clone();
}
//for (int i = 0; i < result.length; i++) System.out.println("Before Crossover: " +result[i].getSolutionRepresentationFor());
if ((indy1 instanceof InterfaceESIndividual) && (partners.get(0) instanceof InterfaceESIndividual)) {
parents = new double[partners.size() + 1][];
children = new double[partners.size() + 1][];
for (int i = 0; i < result.length; i++) {
parents[i] = new double[((InterfaceESIndividual) result[i]).getDGenotype().length];
children[i] = new double[parents[i].length];
System.arraycopy(((InterfaceESIndividual) result[i]).getDGenotype(), 0, parents[i], 0, parents[i].length);
System.arraycopy(((InterfaceESIndividual) result[i]).getDGenotype(), 0, children[i], 0, parents[i].length);
}
for (int i = 0; i < children[0].length; i++) {
u = RNG.randomDouble(0, 1);
if (u <= 0.5) {
beta = Math.pow((2 * u), 1 / (this.eta + 1));
} else {
beta = Math.pow((0.5 / (1 - u)), 1 / (this.eta + 1));
}
children[0][i] = 0.5 * ((1 + beta) * parents[0][i] + (1 - beta) * parents[1][i]);
children[1][i] = 0.5 * ((1 - beta) * parents[0][i] + (1 + beta) * parents[1][i]);
}
// write the result back
for (int i = 0; i < result.length; i++) {
((InterfaceESIndividual) result[i]).setDGenotype(children[i]);
}
}
//in case the crossover was successfull lets give the mutation operators a chance to mate the strategy parameters
for (int i = 0; i < result.length; i++) {
result[i].getMutationOperator().crossoverOnStrategyParameters(indy1, partners);
}
//for (int i = 0; i < result.length; i++) System.out.println("After Crossover: " +result[i].getSolutionRepresentationFor());
return result;
}
/**
* This method allows you to evaluate wether two crossover operators
* are actually the same.
*
* @param crossover The other crossover operator
*/
@Override
public boolean equals(Object crossover) {
if (crossover instanceof CrossoverESSBX) {
CrossoverESSBX cross = (CrossoverESSBX) crossover;
return this.eta == cross.eta;
} else {
return false;
}
}
/**
* This method will allow the crossover operator to be initialized depending on the
* individual and the optimization problem. The optimization problem is to be stored
* since it is to be called during crossover to calculate the exogene parameters for
* the offsprings.
*
* @param individual The individual that will be mutated.
* @param opt The optimization problem.
*/
@Override
public void init(AbstractEAIndividual individual, InterfaceOptimizationProblem opt) {
this.optimizationProblem = opt;
}
public static void main(String[] args) {
Population pop = new Population();
double[] tmpD = new double[2];
ESIndividualDoubleData indy1, indy2, indy3;
F1Problem prob = new F1Problem();
// initialize individual
indy1 = new ESIndividualDoubleData();
double[][] range = new double[2][2];
range[0][0] = -2.0;
range[0][1] = 2.0;
range[1][0] = -2.0;
range[1][1] = 2.0;
indy1.setDoubleDataLength(2);
indy1.setDoubleRange(range);
// initialize values
indy2 = (ESIndividualDoubleData) indy1.clone();
indy3 = (ESIndividualDoubleData) indy1.clone();
if (false) {
// random initialize
indy1.defaultInit(prob);
indy2.defaultInit(prob);
indy3.defaultInit(prob);
} else {
// value initialize
tmpD[0] = 0.5;
tmpD[1] = -0.5;
indy1.initByValue(tmpD, prob);
tmpD[0] = -0.5;
tmpD[1] = 0.5;
indy2.initByValue(tmpD, prob);
tmpD[0] = -0.5;
tmpD[1] = 1;
indy3.initByValue(tmpD, prob);
}
// set the parents
pop.add(indy2);
pop.add(indy3);
tmpD[0] = 1;
tmpD[1] = 1;
Plot plot = new Plot("SBX Test", "x", "y", true);
tmpD = indy1.getDoubleData();
plot.setUnconnectedPoint(tmpD[0], tmpD[1], 0);
tmpD = indy2.getDoubleData();
plot.setUnconnectedPoint(tmpD[0], tmpD[1], 0);
tmpD = indy3.getDoubleData();
plot.setUnconnectedPoint(tmpD[0], tmpD[1], 0);
plot.setUnconnectedPoint(-2, -2, 0);
plot.setUnconnectedPoint(2, 2, 0);
plot.setUnconnectedPoint(2, 2, 0);
CrossoverESSBX cross = new CrossoverESSBX();
cross.eta = 0.2;
AbstractEAIndividual[] offsprings;
for (int i = 0; i < 5000; i++) {
offsprings = cross.mate(indy1, pop);
for (int j = 0; j < offsprings.length; j++) {
tmpD = ((ESIndividualDoubleData) offsprings[j]).getDoubleData();
plot.setUnconnectedPoint(tmpD[0], tmpD[1], 1);
//range = ((ESIndividualDoubleData)offsprings[j]).getDoubleRange();
//System.out.println("["+range[0][0]+"/"+range[0][1]+";"+range[1][0]+"/"+range[1][1]+"]");
}
}
}
@Override
public String getStringRepresentation() {
return this.getName();
}
/**
* This method allows the CommonJavaObjectEditorPanel to read the
* name to the current object.
*
* @return The name.
*/
public String getName() {
return "ES SBX crossover";
}
/**
* This method allows you to set the number of crossovers that occur in the
* genotype.
*
* @param a The number of crossovers.
*/
public void setEta(double a) {
if (a < 0) {
a = 0;
}
this.eta = a;
}
public double getEta() {
return this.eta;
}
public String etaTipText() {
return "Set the Eta_c value (the larger the value, the more restricted the search).";
}
}