27 lines
915 B
HTML
27 lines
915 B
HTML
<html>
|
|
<head>
|
|
<title>Schwefel's double sum</title>
|
|
</head>
|
|
<body>
|
|
<h1 align="center">Schwefels double sum</h1>
|
|
<center>
|
|
<img src="images/f2tex.jpg" width="220" height="102" border="0" align="center">
|
|
</center>
|
|
<p>
|
|
Schwefel's double sum is a quadratic minimization problem. Its difficulty increases by the dimension <i>n</i> in <i>O(n^2)</i>. It is used for analysis of correlating mutations.
|
|
<p>
|
|
It possesses specific symmetrical properties:<br>
|
|
|
|
<img src="images/schwefelsymmetrie.jpg" width="500" height="104" border="0" align="middle">
|
|
<p>
|
|
Its minimum is located at: <i>f(x)</i>=<i>f</i>([0, 0, ... , 0])=0
|
|
<p>
|
|
<img src="images/f2.jpg" width="480" height="360" border="2" align="middle">
|
|
|
|
<hr>
|
|
More information about Schwefel's double sum can be found at:
|
|
<p>
|
|
Hans Paul Schwefel. <i>Evolution and optimum seeking.</i> Sixth-Generation Computer Technology Series. John Wiley & Sons, INC., 1995.
|
|
|
|
</body>
|
|
</html> |