eva2/src/wsi/ra/math/RNG.java

352 lines
8.6 KiB
Java

package wsi.ra.math;
import java.util.ArrayList;
import java.util.Random;
import eva2.tools.Mathematics;
public class RNG extends Random {
private static Random random;
private static long randomSeed;
/**
*
*/
static {
randomSeed=System.currentTimeMillis();
random=new Random(randomSeed);
}
/**
*
*/
public static void setRandomSeed(long new_seed){
//counter++;
randomSeed=new_seed;
if (randomSeed == 0) setRandomSeed();
else random.setSeed(randomSeed);
}
/**
* Set the random seed without replacing zero with current system time.
*/
public static void setRandomSeedStrict(long new_seed){
randomSeed=new_seed;
random.setSeed(randomSeed);
}
/**
*
*/
public static void setRandomSeed() {
randomSeed=System.currentTimeMillis();
random=new Random(randomSeed);
}
/**
*
*/
public static void setRandom(Random base_random) {
random=base_random;
}
/**
*
*/
public static long getRandomSeed() {
return randomSeed;
}
/**
* Returns 0 or 1 evenly distributed.
*/
public static int randomInt() {
return randomInt(0,1);
}
/**
* Returns an evenly distributes int value between zero and
* upperLim-1.
* @param upperLim upper exclusive limit of the random int
*/
public static int randomInt(int upperLim) {
return randomInt(0,upperLim-1);
}
/** This method returns a evenly distributed int value.
* The boundarys are included.
* @param lo Lower bound.
* @param hi Upper bound.
* @return int
*/
public static int randomInt(int lo,int hi) {
if (hi<lo) {
System.err.println("Invalid boundary values! Returning zero.");
return -1;
}
int result = (Math.abs(random.nextInt())%(hi-lo+1))+lo;
if ((result < lo) || (result > hi)) {
System.err.println("Error in RNG.randomInt!");
result = Math.abs(random.nextInt()%(hi-lo+1))+lo;
}
return result;
}
/** This method returns a random permutation of n int values
* @param length The number of int values
* @return The permutation [0-length-1]
*/
public static int[] randomPermutation(int length) {
boolean[] validList = new boolean[length];
int[] result = new int[length];
int index;
for (int i = 0; i < validList.length; i++) validList[i] = true;
for (int i = 0; i < result.length; i++) {
index = randomInt(0, length-1);
while (!validList[index]) {
index++;
if (index == length) index = 0;
}
validList[index] = false;
result[i] = index;
}
return result;
}
/** This method returns a random permutation of n int values
* @param length The number of int values
* @return The permutation [0-length-1]
*/
public static int[] randomPerm(int length) {
ArrayList<Integer> intList = new ArrayList<Integer>(length);
int[] result = new int[length];
for (int i = 0; i < length; i++) {
intList.add(new Integer(i));
}
for (int i = 0; i < length-1; i++) {
int index = randomInt(intList.size());
result[i] = intList.get(index);
intList.remove(index);
}
if (intList.size()>1) System.err.println("Error in randomPerm!");
result[length-1] = intList.get(0);
return result;
}
/**
*
*/
public static long randomLong() {
return randomLong(0,1);
}
/**
*
*/
public static long randomLong(long lo,long hi) {
return (Math.abs(random.nextLong())%(hi-lo+1))+lo;
}
/**
*
*/
public static float randomFloat() {
return random.nextFloat();
}
/**
*
*/
public static float randomFloat(float lo,float hi) {
return (hi-lo)*random.nextFloat()+lo;
}
/**
* A random double value between 0 and 1.
*/
public static double randomDouble() {
return random.nextDouble();
}
/**
*
*/
public static double randomDouble(double lo,double hi) {
return (hi-lo)*random.nextDouble()+lo;
}
/**
*
*/
public static double[] randomDoubleArray(double[] lo,double[] hi) {
double[] xin = new double[lo.length];
for (int i=0;i<lo.length;i++)
xin[i] = (hi[i]-lo[i])*random.nextDouble()+lo[i];
return xin;
}
/**
*
*/
public static double[] randomDoubleArray(double lo,double hi,int size) {
double[] xin = new double[size];
for (int i=0;i<size;i++)
xin[i] = (hi-lo)*random.nextDouble()+lo;
return xin;
}
/**
*
*/
public static double[] randomDoubleArray(double[] lo,double[] hi,double[] xin) {
//counter++;
for (int i=0;i<lo.length;i++)
xin[i] = (hi[i]-lo[i])*random.nextDouble()+lo[i];
return xin;
}
/**
*
*/
public static boolean randomBoolean() {
//counter++;
return (randomInt()==1);
}
/**
*
*/
public static int randomBit() {
//counter++;
return randomInt();
}
/**
*
*/
public static boolean flipCoin(double p) {
//counter++;
return (randomDouble()<p ? true : false);
}
/**
*
*/
public static float gaussianFloat(float dev) {
//counter++;
return (float)random.nextGaussian()*dev;
}
/**
* Return a Gaussian double with mean 0 and deviation dev.
*
* @param dev the deviation of the distribution.
* @return a Gaussian double with mean 0 and given deviation.
*/
public static double gaussianDouble(double dev) {
//counter++;
return random.nextGaussian()*dev;
}
/**
*
*/
public static float exponentialFloat(float mean) {
//counter++;
return (float)(-mean*Math.log(randomDouble()));
}
/**
*
*/
public static double exponentialDouble(double mean) {
//counter++;
return -mean*Math.log(randomDouble());
}
/**
* Returns a vector denoting a random point around the center
* - inside a hypersphere of uniform distribution if nonUnif=0,
* - inside a hypersphere of non-uniform distribution if nonUnif > 0,
* - inside a D-Gaussian if nonUnif < 0.
* For case 2, the nonUnif parameter is used as standard deviation (instead of 1/D), the parameter
* is not further used in the other two cases.
* Original code by Maurice Clerc, from the TRIBES package
*
* @param center center point of the distribution
* @param radius radius of the distribution
* @param nonUnif kind of distribution
*
**/
public static double[] randHypersphere(double[] center, double radius, double nonUnif) {
double[] x = new double[center.length];
int j;
double xLen, r;
int D=center.length;
// ----------------------------------- Step 1. Direction
xLen = 0;
for (j=0; j<D; j++) {
r = gaussianDouble(1);
x[j] = r;
xLen += x[j]*x[j];
}
xLen=Math.sqrt(xLen);
//----------------------------------- Step 2. Random radius
r=randomDouble();
if (nonUnif < 0) r = gaussianDouble(r/2); // D-Gaussian
else if (nonUnif > 0) r = Math.pow(r,nonUnif); // non-uniform hypersphere
else r=Math.pow(r,1./D); // Real hypersphere
for (j=0;j<D;j++) {
x[j] = center[j]+radius*r*x[j]/xLen;
}
return x;
}
/**
* Adds Gaussian noise to a double vector
* @param v the double vector
* @param dev the Gaussian deviation
*/
public static void addNoise(double[] v, double dev) {
for (int i=0; i<v.length; i++) {
// add noise to the value
v[i] += gaussianDouble(dev);
}
}
/**
* Create a normalized random vector with gaussian random double entries.
*
* @param n
* @return
*/
public static double[] gaussianVector(int n, double dev) {
double[] result = new double[n];
for (int i = 0; i < result.length; i++) {
result[i] = RNG.gaussianDouble(dev);
}
Mathematics.normVect(result, result);
return result;
}
/**
* Create a uniform random double vector within the given bounds (inclusive) in every dimension.
*
* @param n
* @param lower
* @param upper
* @return
*/
public static double[] randomVector(int n, double lower, double upper) {
double[] result = new double[n];
for (int i = 0; i < result.length; i++) {
result[i] = RNG.randomDouble(lower, upper);
}
return result;
}
/**
* Create a uniform random integer vector within the given bounds (inclusive) in every dimension.
*
* @param n
* @param lower
* @param upper
* @return
*/
public static int[] randomVector(int n, int lower, int upper) {
int[] result = new int[n];
for (int i = 0; i < result.length; i++) {
result[i] = RNG.randomInt(lower, upper);
}
return result;
}
}