eva2/src/eva2/server/go/strategies/MultiObjectiveEA.java

310 lines
13 KiB
Java

package eva2.server.go.strategies;
import eva2.server.go.InterfacePopulationChangedEventListener;
import eva2.server.go.individuals.AbstractEAIndividual;
import eva2.server.go.operators.archiving.ArchivingNSGAII;
import eva2.server.go.operators.archiving.InformationRetrievalInserting;
import eva2.server.go.operators.archiving.InterfaceArchiving;
import eva2.server.go.operators.archiving.InterfaceInformationRetrieval;
import eva2.server.go.operators.selection.SelectMONonDominated;
import eva2.server.go.populations.InterfaceSolutionSet;
import eva2.server.go.populations.Population;
import eva2.server.go.populations.SolutionSet;
import eva2.server.go.problems.AbstractOptimizationProblem;
import eva2.server.go.problems.FM0Problem;
import eva2.server.go.problems.InterfaceOptimizationProblem;
/**
* A generic framework for multi-objecitve optimization, you need
* to specify an optimization strategy (like GA), an archiver and
* an information retrival strategy. With this scheme you can realized:
* Vector Evaluated GA
* Random Weight GA
* Multiple Objective GA
* NSGA
* NSGA-II
* SPEA
* SPEA 2
* PESA
* PESA-II
* In case you address a multi-objective optimization problem with a single-
* objective optimizer instead of this MOEA, such an optimizer would randomly
* toggle between the objective for each selection and thus explore at least
* the extreme points of the objective space, but simpler methods like
* random search or hill-climbing might even fail on that.
* Created by IntelliJ IDEA.
* User: streiche
* Date: 05.06.2003
* Time: 11:03:50
* To change this template use Options | File Templates.
*/
public class MultiObjectiveEA implements InterfaceOptimizer, java.io.Serializable {
private InterfaceOptimizer m_Optimizer = new GeneticAlgorithm();
private InterfaceArchiving m_Archiver = new ArchivingNSGAII();
private InterfaceInformationRetrieval m_InformationRetrieval = new InformationRetrievalInserting();
private InterfaceOptimizationProblem m_Problem = new FM0Problem();
private String m_Identifier = "";
transient private InterfacePopulationChangedEventListener m_Listener;
public MultiObjectiveEA() {
this.m_Optimizer.getPopulation().setPopulationSize(100);
((GeneticAlgorithm)this.m_Optimizer).setParentSelection(new SelectMONonDominated());
((GeneticAlgorithm)this.m_Optimizer).setPartnerSelection(new SelectMONonDominated());
}
public MultiObjectiveEA(MultiObjectiveEA a) {
this.m_Problem = (InterfaceOptimizationProblem)a.m_Problem.clone();
this.m_Optimizer = (InterfaceOptimizer)a.m_Optimizer.clone();
this.m_Archiver = (InterfaceArchiving)a.m_Archiver.clone();
this.m_InformationRetrieval = (InterfaceInformationRetrieval)a.m_InformationRetrieval.clone();
}
public MultiObjectiveEA(InterfaceOptimizer subOpt, InterfaceArchiving archiving, int archiveSize,
InterfaceInformationRetrieval infoRetrieval, AbstractOptimizationProblem problem) {
setOptimizer(subOpt);
setArchivingStrategy(archiving);
setArchiveSize(archiveSize);
setInformationRetrieval(infoRetrieval);
SetProblem(problem);
}
public Object clone() {
return (Object) new MultiObjectiveEA(this);
}
public void init() {
this.m_Optimizer.init();
this.m_Archiver.addElementsToArchive(this.m_Optimizer.getPopulation());
this.firePropertyChangedEvent(Population.nextGenerationPerformed);
}
/** This method will init the optimizer with a given population
* @param pop The initial population
* @param reset If true the population is reset.
*/
public void initByPopulation(Population pop, boolean reset) {
this.m_Optimizer.initByPopulation(pop, reset);
this.m_Archiver.addElementsToArchive(this.m_Optimizer.getPopulation());
this.firePropertyChangedEvent(Population.nextGenerationPerformed);
}
/** The optimize method will compute a 'improved' and evaluated population
*/
public void optimize() {
// double[][] may = this.showMay(this.m_Optimizer.getPopulation());
// This is in total compliance with Koch's framework nice isn't it?
this.m_Optimizer.optimize();
// now comes all the multiobjective optimization stuff
// This is the Environment Selection
this.m_Archiver.addElementsToArchive(this.m_Optimizer.getPopulation());
//if (true) this.m_Archiver.plotArchive(this.m_Optimizer.getPopulation());
// if (false) {
// int popSize = this.m_Optimizer.getPopulation().size();
// int archiveSize = this.m_Optimizer.getPopulation().getArchive().size();
// int feasiblePop = 0, feasibleArch = 0;
// for (int i = 0; i < popSize; i++) {
// if (((AbstractEAIndividual)this.m_Optimizer.getPopulation().get(i)).getConstraintViolation() == 0) feasiblePop++;
// }
// for (int i = 0; i < archiveSize; i++) {
// if (((AbstractEAIndividual)this.m_Optimizer.getPopulation().getArchive().get(i)).getConstraintViolation() == 0) feasibleArch++;
// }
// System.out.println("Population size : "+popSize + " ("+feasiblePop+"/"+(popSize-feasiblePop)+")");
// System.out.println("Archive size : "+archiveSize + " ("+feasibleArch+"/"+(archiveSize-feasibleArch)+")");
// }
// The InformationRetrieval will choose from the archive and the current population
// the population from which in the next generation the parents will be selected.
this.m_InformationRetrieval.retrieveInformationFrom(this.m_Optimizer.getPopulation());
// double[][] mayday = this.showMay(this.m_Optimizer.getPopulation());
// if ((mayday[0][0] > may[0][0]) || (mayday[1][1] > may[1][1])) {
// System.out.println("Losing the edges:");
// System.out.println("Before : (" +may[0][0]+"/"+may[0][1]+") and ("+may[1][0]+"/"+may[1][1]+")");
// System.out.println("After : (" +mayday[0][0]+"/"+mayday[0][1]+") and ("+mayday[1][0]+"/"+mayday[1][1]+")");
// }
System.gc();
this.firePropertyChangedEvent(Population.nextGenerationPerformed);
}
private double[][] showMay(Population pop) {
Population tmp = new Population();
tmp.addPopulation(pop);
if (pop.getArchive() != null) tmp.addPopulation(pop.getArchive());
double[][] fitness = new double[tmp.size()][];
for (int i = 0; i < tmp.size(); i++) fitness[i] = ((AbstractEAIndividual)tmp.get(i)).getFitness();
double[] minY, maxY;
minY = fitness[0];
maxY = fitness[0];
for (int i = 1; i < fitness.length; i++) {
if (minY[0] > fitness[i][0]) minY = fitness[i];
if (maxY[1] > fitness[i][1]) maxY = fitness[i];
}
double[][] result = new double[2][];
result[0] = minY;
result[1] = maxY;
//System.out.println("Borders: ("+ (Math.round((100*minY[0]))/100.0)+"/"+ (Math.round((100*minY[1]))/100.0)+") ("+ (Math.round((100*maxY[0]))/100.0)+"/"+ (Math.round((100*maxY[1]))/100.0)+")");
return result;
}
/** This method allows you to add the LectureGUI as listener to the Optimizer
* @param ea
*/
public void addPopulationChangedEventListener(InterfacePopulationChangedEventListener ea) {
this.m_Listener = ea;
}
/** Something has changed
*/
protected void firePropertyChangedEvent (String name) {
if (this.m_Listener != null) this.m_Listener.registerPopulationStateChanged(this, name);
}
/** This method will set the problem that is to be optimized
* @param problem
*/
public void SetProblem (InterfaceOptimizationProblem problem) {
this.m_Problem = problem;
this.m_Optimizer.SetProblem(problem);
}
public InterfaceOptimizationProblem getProblem () {
return this.m_Problem;
}
/** This method will return a string describing all properties of the optimizer
* and the applied methods.
* @return A descriptive string
*/
public String getStringRepresentation() {
String result = "";
result += "Multi-Objective Evolutionary Algorithm:\n";
result += "Using:\n";
result += " Archiving Strategy = " + this.m_Archiver.getClass().toString() + "\n";
result += " Information Retrieval = " + this.m_InformationRetrieval.getClass().toString() + "\n";
result += " Information Retrieval = " + this.getClass().toString() + "\n";
result += " Optimizer = " + this.m_Optimizer.getClass().toString() + "\n";
result += this.m_Optimizer.getStringRepresentation() +"\n";
//result += "=> The Optimization Problem: ";
//result += this.m_Problem.getStringRepresentationForProblem(this) +"\n";
//result += this.m_Population.getStringRepresentation();
return result;
}
/** This method allows you to set an identifier for the algorithm
* @param name The indenifier
*/
public void SetIdentifier(String name) {
this.m_Identifier = name;
}
public String getIdentifier() {
return this.m_Identifier;
}
/** This method is required to free the memory on a RMIServer,
* but there is nothing to implement.
*/
public void freeWilly() {
}
/**********************************************************************************************************************
* These are for GUI
*/
/** This method returns a global info string
* @return description
*/
public String globalInfo() {
return "This is general Evolutionary Multi-Criteria Optimization Framework.";
}
/** This method will return a naming String
* @return The name of the algorithm
*/
public String getName() {
return "EMO";
}
/** Assuming that all optimizer will store thier data in a population
* we will allow acess to this population to query to current state
* of the optimizer.
* @return The population of current solutions to a given problem.
*/
public Population getPopulation() {
return this.m_Optimizer.getPopulation();
}
public void setPopulation(Population pop){
this.m_Optimizer.setPopulation(pop);
}
public String populationTipText() {
return "Edit the properties of the Population used.";
}
public InterfaceSolutionSet getAllSolutions() {
return new SolutionSet(getPopulation(), getPopulation().getArchive());
}
/** This method allows you to set/get the optimizing technique to use.
* @return The current optimizing method
*/
public InterfaceOptimizer getOptimizer() {
return this.m_Optimizer;
}
public void setOptimizer(InterfaceOptimizer b){
this.m_Optimizer = b;
}
public String optimizerTipText() {
return "Choose a population based optimizing technique to use.";
}
/** This method allows you to set/get the archiving strategy to use.
* @return The current optimizing method
*/
public InterfaceArchiving getArchivingStrategy() {
return this.m_Archiver;
}
public void setArchivingStrategy(InterfaceArchiving b){
this.m_Archiver = b;
}
public String archivingStrategyTipText() {
return "Choose the archiving strategy.";
}
/** This method allows you to set/get the Information Retrieval strategy to use.
* @return The current optimizing method
*/
public InterfaceInformationRetrieval getInformationRetrieval() {
return this.m_InformationRetrieval;
}
public void setInformationRetrieval(InterfaceInformationRetrieval b){
this.m_InformationRetrieval = b;
}
public String informationRetrievalTipText() {
return "Choose the Information Retrieval strategy.";
}
/** This method allows you to set/get the size of the archive.
* @return The current optimizing method
*/
public int getArchiveSize() {
Population archive = this.m_Optimizer.getPopulation().getArchive();
if (archive == null) {
archive = new Population();
this.m_Optimizer.getPopulation().SetArchive(archive);
}
return archive.getPopulationSize();
}
public void setArchiveSize(int b){
Population archive = this.m_Optimizer.getPopulation().getArchive();
if (archive == null) {
archive = new Population();
this.m_Optimizer.getPopulation().SetArchive(archive);
}
archive.setPopulationSize(b);
}
public String archiveSizeTipText() {
return "Choose the size of the archive.";
}
}