eva2/src/eva2/optimization/individuals/ESIndividualBinaryData.java
Fabian Becker bf1af304dd Lots of refactoring.
* Renamed m_foo variables to proper names.
* Renamed methods with abbreviated names
* Code formatting for better readability
* Removed commented code
2013-06-25 16:20:51 +02:00

337 lines
12 KiB
Java

package eva2.optimization.individuals;
import eva2.optimization.operators.crossover.CrossoverESDefault;
import eva2.optimization.operators.mutation.InterfaceMutation;
import eva2.optimization.operators.mutation.MutateESGlobal;
import eva2.optimization.problems.InterfaceHasInitRange;
import eva2.optimization.problems.InterfaceOptimizationProblem;
import eva2.tools.math.RNG;
import java.util.BitSet;
/** This individual uses a real-valued genotype to code for binary values, either
* by using a threshold value of by interpreting the double value as probability.
* Created by IntelliJ IDEA.
* User: streiche
* Date: 02.07.2003
* Time: 10:37:43
* To change this template use Options | File Templates.
*/
public class ESIndividualBinaryData extends AbstractEAIndividual implements InterfaceESIndividual, InterfaceDataTypeBinary, java.io.Serializable {
private BitSet m_Phenotype = new BitSet();
private double[] m_Genotype;
private boolean m_UseHardSwitch = false;
private double[][] m_Range;
public ESIndividualBinaryData() {
this.mutationProbability = 1.0;
this.mutationOperator = new MutateESGlobal();
this.crossoverProbability = 0.5;
this.crossoverOperator = new CrossoverESDefault();
this.m_Genotype = new double[1];
this.m_Range = new double[1][2];
this.m_Range[0][0] = 0;
this.m_Range[0][1] = 1;
}
public ESIndividualBinaryData(ESIndividualBinaryData individual) {
if (individual.m_Phenotype != null) {
this.m_Phenotype = (BitSet) individual.m_Phenotype.clone();
}
this.m_Genotype = new double[individual.m_Genotype.length];
this.m_Range = new double[individual.m_Genotype.length][2];
for (int i = 0; i < this.m_Genotype.length; i++) {
this.m_Genotype[i] = individual.m_Genotype[i];
this.m_Range[i][0] = individual.m_Range[i][0];
this.m_Range[i][1] = individual.m_Range[i][1];
}
this.m_UseHardSwitch = individual.m_UseHardSwitch;
// cloning the members of AbstractEAIndividual
this.age = individual.age;
this.crossoverOperator = individual.crossoverOperator;
this.crossoverProbability = individual.crossoverProbability;
this.mutationOperator = (InterfaceMutation)individual.mutationOperator.clone();
this.mutationProbability = individual.mutationProbability;
this.selectionProbability = new double[individual.selectionProbability.length];
for (int i = 0; i < this.selectionProbability.length; i++) {
this.selectionProbability[i] = individual.selectionProbability[i];
}
this.fitness = new double[individual.fitness.length];
for (int i = 0; i < this.fitness.length; i++) {
this.fitness[i] = individual.fitness[i];
}
cloneAEAObjects((AbstractEAIndividual) individual);
}
@Override
public Object clone() {
return (Object) new ESIndividualBinaryData(this);
}
/** This method checks on equality regarding genotypic equality
* @param individual The individual to compare to.
* @return boolean if equal true else false.
*/
@Override
public boolean equalGenotypes(AbstractEAIndividual individual) {
if (individual instanceof ESIndividualBinaryData) {
ESIndividualBinaryData indy = (ESIndividualBinaryData) individual;
if ((this.m_Genotype == null) || (indy.m_Genotype == null)) {
return false;
}
if ((this.m_Range == null) || (indy.m_Range == null)) {
return false;
}
for (int i = 0; i < this.m_Range.length; i++) {
if (this.m_Genotype[i] != indy.m_Genotype[i]) {
return false;
}
if (this.m_Range[i][0] != indy.m_Range[i][0]) {
return false;
}
if (this.m_Range[i][1] != indy.m_Range[i][1]) {
return false;
}
}
return true;
} else {
return false;
}
}
/************************************************************************************
* InterfaceDataTypeBinary methods
*/
/** This method allows you to request a certain amount of binary data
* @param length The lenght of the BitSet that is to be optimized
*/
@Override
public void setBinaryDataLength(int length) {
this.m_Genotype = new double[length];
this.m_Range = new double[length][2];
for (int i = 0; i < this.m_Range.length; i++) {
this.m_Range[i][0] = 0;
this.m_Range[i][1] = 1;
}
}
/** This method returns the length of the binary data set
* @return The number of bits stored
*/
@Override
public int size() {
return this.m_Genotype.length;
}
/** This method allows you to read the binary data
* @return BitSet representing the binary data.
*/
@Override
public BitSet getBinaryData() {
if (this.m_UseHardSwitch) {
// In this case it is only tested if the genotyp is bigger than 0.5
for (int i = 0; i < this.m_Genotype.length; i++) {
if (this.m_Genotype[i] > 0.5) {
this.m_Phenotype.set(i);
} else {
this.m_Phenotype.clear(i);
}
}
} else {
// in this case the value of the genotype is interpreted as a probability
for (int i = 0; i < this.m_Genotype.length; i++) {
if (RNG.flipCoin(this.m_Genotype[i])) {
this.m_Phenotype.set(i);
} else {
this.m_Phenotype.clear(i);
}
}
}
return this.m_Phenotype;
}
/** This method allows you to read the binary data without
* an update from the genotype
* @return BitSet representing the binary data.
*/
@Override
public BitSet getBinaryDataWithoutUpdate() {
return this.m_Phenotype;
}
/** This method allows you to set the binary data.
* @param binaryData The new binary data.
*/
@Override
public void SetBinaryPhenotype(BitSet binaryData) {
this.m_Phenotype = binaryData;
}
/** This method allows you to set the binary data, this can be used for
* memetic algorithms.
* @param binaryData The new binary data.
*/
@Override
public void SetBinaryGenotype(BitSet binaryData) {
this.SetBinaryPhenotype(binaryData);
for (int i = 0; i < this.m_Genotype.length; i++) {
if (this.m_UseHardSwitch) {
if (binaryData.get(i)) {
this.m_Genotype[i] = RNG.randomDouble(0.55,1.0);
}
else {
this.m_Genotype[i] = RNG.randomDouble(0.0,0.45);
}
} else {
if (binaryData.get(i)) {
this.m_Genotype[i] = 0.9;
}
else {
this.m_Genotype[i] = 0.1;
}
}
}
}
/************************************************************************************
* AbstractEAIndividual methods
*/
/** This method will init the individual with a given value for the
* phenotype.
* @param obj The initial value for the phenotype
* @param opt The optimization problem that is to be solved.
*/
@Override
public void initByValue(Object obj, InterfaceOptimizationProblem opt) {
if (obj instanceof BitSet) {
BitSet bs = (BitSet) obj;
this.SetBinaryGenotype(bs);
} else {
this.defaultInit(opt);
System.out.println("Initial value for ESIndividualBinaryData is no BitSet!");
}
this.mutationOperator.init(this, opt);
this.crossoverOperator.init(this, opt);
}
/** This method will return a string description of the GAIndividal
* noteably the Genotype.
* @return A descriptive string
*/
@Override
public String getStringRepresentation() {
String result = "";
result += "ESIndividual coding double: (";
result += "Fitness {";
for (int i = 0; i < this.fitness.length; i++) {
result += this.fitness[i] + ";";
}
result += "}/SelProb{";
for (int i = 0; i < this.selectionProbability.length; i++) {
result += this.selectionProbability[i] + ";";
}
result += "})\n Value: ";
result += "[";
for (int i = 0; i < this.m_Genotype.length; i++) {
result += this.m_Genotype[i] + "; ";
}
result += "]";
return result;
}
/************************************************************************************
* InterfaceESIndividual methods
*/
/** This method will allow the user to read the ES 'genotype'
* @return BitSet
*/
@Override
public double[] getDGenotype() {
return this.m_Genotype;
}
/** This method will allow the user to set the current ES 'genotype'.
* @param b The new genotype of the Individual
*/
@Override
public void SetDGenotype(double[] b) {
this.m_Genotype = b;
for (int i = 0; i < this.m_Genotype.length; i++) {
if (this.m_Genotype[i] < this.m_Range[i][0]) {
this.m_Genotype[i] = this.m_Range[1][0];
}
if (this.m_Genotype[i] > this.m_Range[i][1]) {
this.m_Genotype[i] = this.m_Range[1][1];
}
}
}
// /** This method will set the range of the double attributes. If range.length
// * does not equal doubledata.length only range[i] will be used to set all
// * ranges.
// * @param range The new range for the double data.
// */
// public void SetDoubleRange(double[][] range) {
// this.m_Range = range;
// }
/** This method will return the range for all double attributes.
* @return The range array.
*/
@Override
public double[][] getDoubleRange() {
return this.m_Range;
}
/** This method performs a simple one element mutation on the double vector
*/
@Override
public void defaultMutate() {
ESIndividualDoubleData.defaultMutate(m_Genotype, m_Range);
}
@Override
public void defaultInit(InterfaceOptimizationProblem prob) {
if ((prob != null) && (prob instanceof InterfaceHasInitRange) && (((InterfaceHasInitRange)prob).getInitRange()!=null)) {
ESIndividualDoubleData.defaultInit(m_Genotype, (double[][])((InterfaceHasInitRange)prob).getInitRange());
}
else {
ESIndividualDoubleData.defaultInit(m_Genotype, m_Range);
}
}
/**********************************************************************************************************************
* These are for GUI
*/
/** This method allows the CommonJavaObjectEditorPanel to read the
* name to the current object.
* @return The name.
*/
@Override
public String getName() {
return "ES individual";
}
/** This method returns a global info string
* @return description
*/
public static String globalInfo() {
return "This is an ES individual adopted to optimize binary values.";
}
/** This method will toggle between genotype interpretation as bit probability and
* fixed switch.
* @param b the Switch.
*/
public void setToggleInterpretation(boolean b) {
this.m_UseHardSwitch = b;
}
public boolean getToggleInterpretation() {
return this.m_UseHardSwitch;
}
public String toggleInterpretationTipText() {
return "Toggle between interpretation as probability or if(>0.5).";
}
}