Files
eva2/src/eva2/optimization/statistics/AbstractStatistics.java
Fabian Becker ca70b48bd2 Fixed comment fuckup where simple was replaced with eva2.problems.simple
Implements YamlStatistics in cli.Main
A few fixes in the processor to allow GUI-less optimization
2014-11-13 17:49:40 +01:00

1258 lines
52 KiB
Java

package eva2.optimization.statistics;
import eva2.gui.BeanInspector;
import eva2.optimization.go.InterfaceOptimizationParameters;
import eva2.optimization.individuals.AbstractEAIndividual;
import eva2.optimization.individuals.IndividualInterface;
import eva2.optimization.population.Population;
import eva2.optimization.population.PopulationInterface;
import eva2.optimization.strategies.InterfaceOptimizer;
import eva2.problems.InterfaceAdditionalPopulationInformer;
import eva2.tools.Pair;
import eva2.tools.StringSelection;
import eva2.tools.StringTools;
import eva2.tools.ToolBox;
import eva2.tools.math.Mathematics;
import eva2.yaml.BeanSerializer;
import java.io.File;
import java.io.FileOutputStream;
import java.io.PrintWriter;
import java.text.SimpleDateFormat;
import java.util.*;
import java.util.concurrent.CopyOnWriteArraySet;
/**
* An abstract class handling statistics. Most important stuff happens in startOptimizationPerformed, stopOptimizationPerformed
* and createNextGenerationPerformed. Any measures (run based or multi-run based) are reset in startOptimizationPerformed,
* updated per iteration in createNextGenerationPerformed and reported to listeners in stopOptimizationPerformed.
* Several different verbosity levels are regarded.
* The method plotCurrentResults should be implemented to plot further results per iteration.
* <p>
* All displayable data is now routed through a single pipeline, which consists in a
* list of Objects assembled in the getOutputValues method. This allows all simple data types which are
* provided by the external informer instances to be handled uniformly to the internally collected data, and
* thus they can be plotted and text-dumped in the same manner.
* Basic fields are identified by the enum GraphSelectionEnum and are available independently of additional
* informer instances.
* <p>
* Depending on the field selection state and the informers, the list of data fields is dynamically altered,
* however changes during a multi-run are ignored, since the potential of inconsistencies is too high.
* <p>
* Listeners implementing InterfaceTextListener receive String output (human readable).
* Listeners implementing InterfaceStatisticsListener receive the raw data per iteration.
*/
public abstract class AbstractStatistics implements InterfaceTextListener, InterfaceStatistics {
private transient PrintWriter resultOut;
protected InterfaceStatisticsParameters statisticsParameter;
/**
* Keep track of all intermediate fitness values, best, avg. and worst, averaging over all runs
* for final output, "refining" the multi run data.
* If the runs have different lengths, the shortest of all defines the length
* of averaged data to be displayed. This mechanism expects that createNextGenerationPerformed
* comes in regular intervals (in terms of function calls performed). This needs to be emulated
* by dynamic population optimizers, also due to the graph output.
*/
private boolean refineMultiRuns = true;
// private ArrayList<double[][]> meanCollection;
private ArrayList<Object[]> finalObjectData;
private ArrayList<Double[]> sumDataCollection; // collect summed-up data of multiple runs indexed per iteration
protected Object[] currentStatObjectData = null; // the raw Object data collected in an iteration
protected Double[] currentStatDoubleData = null; // the parsed doubles collected in an iteration (or null for complex data fields)
protected String[] currentStatHeader = null; // the header Strings of the currently provided data
protected String[] currentStatMetaInfo = null; // meta information on the statistical data
private Double[] statDataSumOverAll = null;
// say whether the object should be written to a file every time
private boolean saveParams = true;
private boolean firstPlot = true;
private int iterationCounter = 0;
// show this many iterations of the averaged performance after a full multi-run
private int showAvgIntervals = 9;
// collect data
protected int functionCalls;
protected int functionCallSum;
protected int convergenceCnt;
protected int feasibleFoundAfter;
protected int numOfRunsFeasibleFound;
protected double feasibleFoundAfterSum;
protected int optRunsPerformed;
protected double[] currentBestFit;
protected double[] currentBestFeasibleFit;
protected double[] currentMeanFit;
protected double[] currentWorstFit;
protected double currentAvgEucDistInPop, currentMaxEucDistInPop;
protected double currentAvgPopDistMetric, currentMaxPopDistMetric;
protected IndividualInterface bestCurrentIndy, bestOfRunIndy, bestOfRunFeasibleIndy, bestFeasibleAllRuns, bestIndyAllRuns;
// collect feasible results of a run
private ArrayList<IndividualInterface> runBestFeasibleList;
private ArrayList<IndividualInterface> runBestFitList;
private transient Set<InterfaceTextListener> textListeners;
private transient Set<InterfaceStatisticsListener> dataListeners = null;
private List<InterfaceAdditionalPopulationInformer> lastInformerList = null;
private PopulationInterface lastSols = null;
private String textFieldDelimiter = "\t";
private int defaultFitCriterion = 0; // ToDo this might be a user chosen int - or even more elegantly, a MOSOConverter
protected StringSelection lastFieldSelection = null; // store the graph selection at the beginning of a multi-run
protected boolean lastIsShowFull = false; // store the "show full text" stats property at the beginning of a multi-run
public AbstractStatistics() {
firstPlot = true;
functionCalls = 0;
functionCallSum = 0;
convergenceCnt = 0;
optRunsPerformed = 0;
iterationCounter = 0;
textListeners = new CopyOnWriteArraySet<>();
dataListeners = new CopyOnWriteArraySet<>();
}
@Override
public void addDataListener(InterfaceStatisticsListener l) {
dataListeners.add(l);
}
@Override
public boolean removeDataListener(InterfaceStatisticsListener l) {
return dataListeners.remove(l);
}
private void fireDataListeners() {
if (dataListeners != null) {
for (InterfaceStatisticsListener l : dataListeners) {
l.notifyGenerationPerformed(currentStatHeader, currentStatObjectData, currentStatDoubleData);
}
}
}
private void fireDataListenersFinalize() {
if (dataListeners != null) {
LinkedList<InterfaceStatisticsListener> toRemove = new LinkedList<>();
for (InterfaceStatisticsListener l : dataListeners) {
boolean rm = l.notifyMultiRunFinished(currentStatHeader, finalObjectData);
if (rm) {
toRemove.add(l);
}
}
for (InterfaceStatisticsListener l : toRemove) {
dataListeners.remove(l);
}
}
}
/**
* Notify listeners on the start and stop of a run.
*
* @param runNumber current run (started or stopped)
* @param normal in case of stop: the stop was terminated normally (as opposed to manually)
* @param start if true, give the start signal, otherwise the stop signal
*/
private void fireDataListenersStartStop(int runNumber, boolean normal, boolean start) {
if (dataListeners != null) {
for (InterfaceStatisticsListener l : dataListeners) {
if (start) {
l.notifyRunStarted(runNumber, statisticsParameter.getMultiRuns(), currentStatHeader, currentStatMetaInfo);
} else {
l.notifyRunStopped(optRunsPerformed, normal);
l.finalMultiRunResults(currentStatHeader, finalObjectData);
}
}
}
}
@Override
public void addTextListener(InterfaceTextListener listener) {
if (!textListeners.contains(listener)) {
textListeners.add(listener);
}
}
@Override
public boolean removeTextListener(InterfaceTextListener listener) {
return textListeners.remove(listener);
}
/**
* Collect start date and time of the run and if indicated, open a file output stream.
*
* @param infoString
*/
protected void initializeOutput(String infoString) {
String startDate = getDateString();
// open the result file:
if (doFileOutput() // not "text-window only"
&& (statisticsParameter.getOutputVerbosity() != InterfaceStatisticsParameters.OutputVerbosity.NONE)) { // verbosity accordingly high
//!resFName.equalsIgnoreCase("none") && !resFName.equals("")) {
String fnameBase = makeOutputFileName(statisticsParameter.getResultFilePrefix(), infoString, startDate);
int cnt = 0;
String fname = fnameBase;
while (new File(fname).exists()) {
cnt++;
fname = fnameBase + "." + cnt;
}
try {
resultOut = new PrintWriter(new FileOutputStream(fname));
} catch (Exception e) {
e.printStackTrace();
System.out.println("Error: " + e);
}
resultOut.println("StartDate:" + startDate);
} else {
resultOut = null;
}
}
/**
* Return a simple String describing the current date and time.
*
* @return
*/
public static String getDateString() {
SimpleDateFormat formatter = new SimpleDateFormat("E'_'yyyy.MM.dd'_at_'HH.mm.ss");
return formatter.format(new Date());
}
protected boolean doFileOutput() {
return (statisticsParameter.getOutputTo() != InterfaceStatisticsParameters.OutputTo.WINDOW); // not "text-window only"
}
private String makeOutputFileName(String prefix, String infoString, String startDate) {
return (prefix + "_" + infoString).replace(' ', '_') + "_" + startDate + ".txt";
}
/**
* If set to true, before every run the parameters will be stored to a file at the start
* of each run. Default is true.
*
* @param doSave
*/
public void setSaveParams(boolean doSave) {
saveParams = doSave;
}
@Override
public void startOptimizationPerformed(String infoString, int runNumber, InterfaceOptimizationParameters params, List<InterfaceAdditionalPopulationInformer> informerList) {
if (runNumber == 0) {
// store the initial graph selection state, so that modifications during runtime cannot cause inconsistencies
lastFieldSelection = (StringSelection) statisticsParameter.getFieldSelection().clone();
lastIsShowFull = statisticsParameter.isOutputAllFieldsAsText();
currentStatDoubleData = null;
currentStatObjectData = null;
List<String> headerFields = getOutputHeaderFieldNames(informerList);
currentStatHeader = headerFields.toArray(new String[headerFields.size()]);
currentStatMetaInfo = getOutputMetaInfoAsArray(informerList);
functionCallSum = 0;
firstPlot = true;
optRunsPerformed = 0;
convergenceCnt = 0;
if (saveParams) {
statisticsParameter.saveInstance();
}
initializeOutput(infoString);
bestIndyAllRuns = null;
bestFeasibleAllRuns = null;
runBestFeasibleList = new ArrayList<>();
runBestFitList = new ArrayList<>();
if (refineMultiRuns) {
sumDataCollection = new ArrayList<>();
} else {
sumDataCollection = null;
}
finalObjectData = null;
statDataSumOverAll = null;
feasibleFoundAfterSum = -1;
numOfRunsFeasibleFound = 0;
}
feasibleFoundAfter = -1;
bestCurrentIndy = null;
bestOfRunIndy = null;
currentBestFeasibleFit = null;
bestOfRunFeasibleIndy = null;
lastInformerList = null;
lastSols = null;
iterationCounter = 0;
if (printRunIntroVerbosity()) {
printToTextListener("\n****** Multirun " + runNumber);
}
if (params != null) {
if (printRunIntroVerbosity()) {
printToTextListener("\nOptimization parameters: \n");
printToTextListener(BeanSerializer.serializeObject(params));
}
}
/*
ToDo: Figure out if we need this. Right now it is just spamming the text output
if (printRunIntroVerbosity()) {
printToTextListener("\nStatistics parameters: ");
printToTextListener(BeanInspector.niceToString(getStatisticsParameters()) + '\n');
}
*/
functionCalls = 0;
fireDataListenersStartStop(runNumber, true, true);
}
@Override
public void stopOptimizationPerformed(boolean normal, String stopMessage) {
if (lastSols == null) {
System.err.println("WARNING, possibly there was no call to createNextGenerationPerformed before calling stopOptimizationPerformed (AbstractStatistics).");
}
if (iterationCounter < sumDataCollection.size()) {
// no good: later run was shorter than the first one. What to do? Discard the longer one:
for (int i = sumDataCollection.size() - 1; i >= iterationCounter; i--) {
sumDataCollection.remove(i);
}
}
optRunsPerformed++;
functionCallSum += functionCalls;
if (printRunStoppedVerbosity() && (stopMessage != null)) {
printToTextListener(" Termination message: " + stopMessage + "\n");
}
if (printRunStoppedVerbosity()) {
printToTextListener(" Function calls run: " + functionCalls + ", sum: " + functionCallSum + "\n");
}
// check if target zero was reached
if (bestCurrentIndy != null) {
if (Mathematics.norm(bestOfRunIndy.getFitness()) < this.statisticsParameter.getConvergenceRateThreshold()) {
convergenceCnt++;
}
if (printRunStoppedVerbosity()) {
printIndy("Last best", bestCurrentIndy);
}
}
if (bestOfRunIndy != null) {
runBestFitList.add(bestOfRunIndy);
if (printRunStoppedVerbosity()) {
printIndy("Run best", bestOfRunIndy);
}
}
if (feasibleFoundAfter > 0) {
if (printRunStoppedVerbosity()) {
printToTextListener(" Feasible ind. found after " + feasibleFoundAfter + " evaluations.\n");
}
} else {
if (printRunStoppedVerbosity()) {
printToTextListener(" NO feasible individual found.\n");
}
}
if (printRunStoppedVerbosity()) {
printToTextListener(" Solution correlations (min,max,avg,med,var): " + BeanInspector.toString(Population.getCorrelations((Population) lastSols)) + "\n");
}
if (bestOfRunFeasibleIndy != null) {
runBestFeasibleList.add(bestOfRunFeasibleIndy);
if (printRunStoppedVerbosity()) {
if ((bestOfRunFeasibleIndy instanceof AbstractEAIndividual) && ((AbstractEAIndividual) bestOfRunFeasibleIndy).equalGenotypes((AbstractEAIndividual) bestOfRunIndy)) {
printToTextListener("* Run best feasible individual equals best individual.\n");
} else {
if (bestOfRunIndy instanceof AbstractEAIndividual) {
if (((AbstractEAIndividual) bestOfRunIndy).violatesConstraint()) {
printToTextListener(" Run best individual violates constraints by " + ((AbstractEAIndividual) bestOfRunIndy).getConstraintViolation() + "\n");
}
if (((AbstractEAIndividual) bestOfRunIndy).isMarkedPenalized()) {
printToTextListener(" Run best individual is penalized.\n");
}
}
printIndy("Run best feasible", bestOfRunFeasibleIndy);
}
}
}
if (finalObjectData == null) {
finalObjectData = new ArrayList<>();
}
finalObjectData.add(currentStatObjectData);
if (!printRunStoppedVerbosity() && printFinalVerbosity()) {
printToTextListener(".");
}
// if (currentBestFit!= null) {
// if (printRunStoppedVerbosity()) printToTextListener(" Best Fitness: " + BeanInspector.toString(currentBestFit) + "\n");
// }
fireDataListenersStartStop(optRunsPerformed, normal, false);
}
@Override
public void postProcessingPerformed(Population resultPop) { // called from processor
if (!printRunStoppedVerbosity() && printFinalVerbosity() && optRunsPerformed >= statisticsParameter.getMultiRuns()) {
printToTextListener("\n");
}
if (printRunStoppedVerbosity()) {
if (resultPop != null && (resultPop.size() > 0)) {
printToTextListener("Resulting population: \n");
for (int i = 0; i < resultPop.size(); i++) {
printToTextListener(AbstractEAIndividual.getDefaultStringRepresentation(resultPop.getEAIndividual(i)));
printToTextListener("\n");
}
}
}
if (optRunsPerformed >= statisticsParameter.getMultiRuns()) {
finalizeOutput();
fireDataListenersFinalize();
}
}
private PopulationInterface makeStatsPop() {
Population pop = new Population(1);
// if (bestCurrentIndy!=null) pop.add(bestCurrentIndy);
// if (bestOfRunIndy!=null) pop.add(bestOfRunIndy);
// if (bestOfRunFeasibleIndy!=null) pop.add(bestOfRunFeasibleIndy);
if (bestIndyAllRuns != null) {
pop.add(bestIndyAllRuns);
}
return pop;
}
private void printIndy(String prefix, IndividualInterface indy) {
printToTextListener("* " + prefix + " ind.: " + BeanInspector.toString(indy) + '\n');
printToTextListener(" solution data : " + AbstractEAIndividual.getDefaultDataString(indy) + '\n');
printToTextListener(" solution fit : " + BeanInspector.toString(indy.getFitness()));
if (!(indy instanceof AbstractEAIndividual)) {
printToTextListener(" - feasibility unknown\n");
} else {
if (((AbstractEAIndividual) indy).isMarkedPenalized() || ((AbstractEAIndividual) indy).violatesConstraint()) {
printToTextListener(" - infeasible\n");
} else {
printToTextListener("\n");
}
}
}
/**
* Calculate the mean fitness of final best individuals over the last series of multi-runs.
*
* @return
*/
public double[] getMeanBestFit(boolean requireFeasible) {
return calcMeanFit(requireFeasible ? runBestFeasibleList : runBestFitList);
}
/**
* Calculate the median fitness of final best individuals over the last series of multi-runs.
*
* @return
*/
public double[] getMedianBestFit(boolean requireFeasible) {
return calcMedianFit(requireFeasible ? runBestFeasibleList : runBestFitList);
}
protected void finalizeOutput() {
if (printFinalVerbosity()) {
printToTextListener("*******\n Runs performed: " + optRunsPerformed + ", reached target " + convergenceCnt + " times with threshold " + statisticsParameter.getConvergenceRateThreshold() + ", rate " + convergenceCnt / (double) statisticsParameter.getMultiRuns() + '\n');
}
if (printFinalVerbosity()) {
printToTextListener(" Average function calls: " + (functionCallSum / optRunsPerformed) + "\n");
}
if (printFinalVerbosity() && (feasibleFoundAfterSum >= 0.)) {
printToTextListener(" Feasible solution found in " + numOfRunsFeasibleFound + " of " + optRunsPerformed + " runs \n");
printToTextListener(" Average evaluations until feasible ind. was found in " + numOfRunsFeasibleFound + " runs: " + feasibleFoundAfterSum / numOfRunsFeasibleFound + " evaluations\n");
}
if (printFinalVerbosity() && (statDataSumOverAll != null)) {
printToTextListener(" Averaged sum of run statistical data: (" + optRunsPerformed + " runs):");
for (int i = 0; i < statDataSumOverAll.length; i++) {
if (statDataSumOverAll[i] != null) {
printToTextListener(textFieldDelimiter + (statDataSumOverAll[i] / optRunsPerformed));
}
}
printToTextListener("\n Averaged last statistical data (" + optRunsPerformed + " runs):");
Double[] lastSum = sumDataCollection.get(sumDataCollection.size() - 1);
for (int i = 0; i < lastSum.length; i++) {
if (lastSum[i] != null) {
printToTextListener(textFieldDelimiter + (lastSum[i] / optRunsPerformed));
}
}
// for (int i=0; i<lastAdditionalInfoSums.length; i++) if (lastAdditionalInfoSums[i]!=null) printToTextListener(" \t"+(lastAdditionalInfoSums[i]/optRunsPerformed));
printToTextListener("\n");
}
if (printFinalVerbosity() && (bestIndyAllRuns != null)) {
printIndy("Overall best", bestIndyAllRuns);
}
if (printFinalVerbosity()) {
printToTextListener(getFinalAdditionalInfo() + '\n');
}
if (optRunsPerformed > 1) {
if (runBestFitList.size() > 0) {
if (printFinalVerbosity()) {
double[] meanBestFit = getMeanBestFit(false);
printToTextListener(" MultiRun stats: Mean best fitness: " + BeanInspector.toString(meanBestFit) + "\n");
if (meanBestFit.length == 1) {
printToTextListener(" MultiRun stats: Variance/Std.Dev.: " + BeanInspector.toString(calcStdDevVar(runBestFitList, meanBestFit[0])) + "\n");
}
printToTextListener(" MultiRun stats: Median best fitn.: " + BeanInspector.toString(getMedianBestFit(false)) + "\n");
}
}
if (printFinalVerbosity() && (bestFeasibleAllRuns != null)) {
printIndy("Overall best feasible", bestFeasibleAllRuns);
}
if (runBestFeasibleList.size() > 0) { // always output feasible stats even if theyre equal
if (printFinalVerbosity()) {
double[] meanBestFeasibleFit = getMeanBestFit(true);
printToTextListener(" MultiRun stats: Mean best feasible fitness (" + numOfRunsFeasibleFound + " runs): " + BeanInspector.toString(meanBestFeasibleFit) + "\n");
if (meanBestFeasibleFit.length == 1) {
printToTextListener(" MultiRun stats: Variance/Std.Dev.: " + BeanInspector.toString(calcStdDevVar(runBestFeasibleList, meanBestFeasibleFit[0])) + "\n");
}
printToTextListener(" MultiRun stats: Median best feasible fitn. (: " + numOfRunsFeasibleFound + " runs): " + BeanInspector.toString(getMedianBestFit(true)) + "\n");
}
}
if (refineMultiRuns && (sumDataCollection != null)) {
if (printFinalVerbosity()) {
printToTextListener(" Averaged performance:\n");
}
// the summed-up values of the mean collection is divided by the number of runs
for (int i = 0; i < sumDataCollection.size(); i++) {
divideMean(sumDataCollection.get(i), optRunsPerformed);
}
if (printFinalVerbosity()) {
printToTextListener(refineToText(sumDataCollection, showAvgIntervals));
}
}
if (printFinalVerbosity() && (finalObjectData != null)) {
printToTextListener(" Last data line of " + finalObjectData.size() + " multi-runs:\n");
for (int i = 0; i < finalObjectData.size(); i++) {
printToTextListener(BeanInspector.toString(finalObjectData.get(i)));
printToTextListener("\n");
}
}
}
if (resultOut != null) {
String StopDate = getDateString();
resultOut.println("StopDate:" + StopDate);
resultOut.close();
}
}
private String getFinalAdditionalInfo() {
PopulationInterface bestPop = makeStatsPop();
String additionalFields = getOutputHeaderFieldNamesAsString(lastInformerList);
List<Object> vals = getOutputValues(lastInformerList, bestPop);
StringBuilder sbuf = new StringBuilder("Overall best statistical data: \n");
sbuf.append(additionalFields);
sbuf.append('\n');
sbuf.append(StringTools.concatValues(vals, textFieldDelimiter));
return sbuf.toString();
}
private double[] calcStdDevVar(ArrayList<IndividualInterface> list, double meanFit) {
double tmp, sum = 0;
for (Iterator<IndividualInterface> iter = list.iterator(); iter.hasNext(); ) {
IndividualInterface indy = iter.next();
tmp = indy.getFitness()[0] - meanFit;
sum += (tmp * tmp);
}
double[] res = new double[2];
res[0] = sum / list.size();
res[1] = Math.sqrt(res[0]);
return res;
}
/**
* Calculate the mean fitness of a list of individuals.
*
* @param list
* @return
*/
public static double[] calcMeanFit(List<IndividualInterface> list) {
double[] sumFit = list.get(0).getFitness().clone();
for (int i = 1; i < list.size(); i++) {
Mathematics.vvAdd(sumFit, list.get(i).getFitness(), sumFit);
}
Mathematics.svDiv(list.size(), sumFit, sumFit);
return sumFit;
}
public static double[] calcMedianFit(List<IndividualInterface> list) {
ArrayList<double[]> dblAList = new ArrayList<>(list.size());
for (int i = 0; i < list.size(); i++) {
dblAList.add(list.get(i).getFitness());
}
return Mathematics.median(dblAList, false);
}
public String refineToText(ArrayList<Double[]> data, int iterationsToShow) {
String hd = getOutputHeaderFieldNamesAsString(lastInformerList);
StringBuffer sbuf = new StringBuffer("Iteration");
sbuf.append(textFieldDelimiter);
sbuf.append(hd);
sbuf.append("\n");
refineToText(data, iterationsToShow, sbuf, textFieldDelimiter);
return sbuf.toString();
}
public static void refineToText(ArrayList<Double[]> data, int iterationsToShow, StringBuffer sbuf, String delim) {
double step = data.size() / (iterationsToShow - 1.);
int printedIteration = 0;
Double[] meanData;
for (int i = 1; i < data.size() + 1; i++) {
// print the first, last and intermediate iterations requested by the integer parameter
// first one is printed always, as printedIteration=0
if ((i == data.size()) || ((i - 1) == Math.round(printedIteration * step))) {
printedIteration++;
meanData = data.get(i - 1);
sbuf.append(i);
for (int k = 0; k < meanData.length; k++) {
sbuf.append(delim);
sbuf.append(BeanInspector.toString(meanData[k]));
}
sbuf.append("\n");
}
}
}
@Override
public void printToTextListener(String s) {
if ((resultOut != null)) {
resultOut.print(s);
}
for (InterfaceTextListener l : textListeners) {
if (statisticsParameter.getOutputTo() != InterfaceStatisticsParameters.OutputTo.FILE) {
l.print(s);
}
}
}
////////////// InterfaceTextListener
@Override
public void print(String str) {
printToTextListener(str);
}
////////////// InterfaceTextListener
@Override
public void println(String str) {
printToTextListener(str);
printToTextListener("\n");
}
@Override
public InterfaceStatisticsParameters getStatisticsParameters() {
return statisticsParameter;
}
protected boolean doTextOutput() {
return (resultOut != null) || (textListeners.size() > 0);
}
/**
* Collect all field names of both internal fields and fields of external informers. Then
* concatenate them to a string using the textFieldDelimiter of the instance.
*
* @param informerList
* @return
*/
protected String getOutputHeaderFieldNamesAsString(List<InterfaceAdditionalPopulationInformer> informerList) {
List<String> headlineFields = getOutputHeaderFieldNames(informerList);
return StringTools.concatFields(headlineFields, textFieldDelimiter);
}
/**
* Collect meta information on both internal fields and fields of external informers.
* The length of this list depends on the field selection state.
*
* @param informerList
* @return
*/
protected List<String> getOutputHeaderFieldNames(List<InterfaceAdditionalPopulationInformer> informerList) {
ArrayList<String> headlineFields = new ArrayList<>(5);
headlineFields.addAll(Arrays.asList(getSimpleOutputHeader()));
if (informerList != null) {
headlineFields.addAll(getAdditionalHeaderMetaInfo(informerList, null));
}
return headlineFields;
}
/**
* Collect all field names of both internal fields and fields of external informers.
* The length of this list depends on the field selection state.
*
* @param informerList
* @return
*/
protected List<String> getOutputMetaInfo(List<InterfaceAdditionalPopulationInformer> informerList) {
ArrayList<String> infoStrings = new ArrayList<>(5);
ArrayList<String> addStrings = new ArrayList<>(5);
infoStrings.addAll(Arrays.asList(getSimpleOutputMetaInfo()));
if (informerList != null) {
getAdditionalHeaderMetaInfo(informerList, addStrings);
}
infoStrings.addAll(addStrings);
return infoStrings;
}
protected String[] getOutputMetaInfoAsArray(List<InterfaceAdditionalPopulationInformer> informerList) {
List<String> metaStrings = getOutputMetaInfo(informerList);
return metaStrings.toArray(new String[metaStrings.size()]);
}
/**
* Collect the names of data fields which are collected internally.This must correspond to the
* method {@link #getSimpleOutputValues()}.
* Basic fields are identified by the enum GraphSelectionEnum and are available independently of additional
* informer instances.
*
* @return
* @see #getSimpleOutputValues()
*/
protected String[] getSimpleOutputHeader() {
// collect the full header by using the entries of the GraphSelectionEnum
GraphSelectionEnum[] vals = GraphSelectionEnum.values();
ArrayList<String> headerEntries = new ArrayList<>();
headerEntries.add("FunctionCalls");
for (GraphSelectionEnum val : vals) {
if (isRequestedField(val)) {
headerEntries.add(val.toString());
}
}
return headerEntries.toArray(new String[headerEntries.size()]);
}
/**
* Collect the info strings of data fields collected internally. This must correspond to
* the method {@link #getSimpleOutputValues()}.
* Basic meta info is defined by the enum GraphSelectionEnum.
*
* @return
* @see #getSimpleOutputValues()
*/
protected String[] getSimpleOutputMetaInfo() {
GraphSelectionEnum[] vals = GraphSelectionEnum.values();
ArrayList<String> headerInfo = new ArrayList<>();
headerInfo.add("The number of function evaluations");
for (int i = 0; i < vals.length; i++) {
if (isRequestedField(vals[i])) {
headerInfo.add(GraphSelectionEnum.getInfoStrings()[i]);
}
}
return headerInfo.toArray(new String[headerInfo.size()]);
}
/**
* Indicate whether the given statistics data type is requested to
* be displayed (and thus needs to be calculated).
*
* @param graphSelectionEnum
* @return
*/
protected boolean isRequestedField(GraphSelectionEnum graphSelectionEnum) {
return (lastIsShowFull || (lastFieldSelection.isSelected(graphSelectionEnum)));
}
/**
* Indicate whether the given statistics data type is requested to
* be displayed (and thus needs to be calculated).
*
* @param index the index of the field within the string selection object
* @return
*/
protected boolean isRequestedField(int index) {
return (lastIsShowFull || (lastFieldSelection.isSelected(index)));
}
/**
* Indicate whether the given statistics data type is requested to
* be displayed (and thus needs to be calculated).
*
* @param header the header string of the field in question
* @return
*/
protected boolean isRequestedAdditionalField(String header) {
return (lastIsShowFull || (lastFieldSelection.isSelected(header)));
}
/**
* Return all simple data fields collected internally. This must correspond to the
* method {@link #getSimpleOutputHeader()}.
*
* @return
* @see #getSimpleOutputHeader()
*/
protected Object[] getSimpleOutputValues() {
GraphSelectionEnum[] selEnumVals = null;
selEnumVals = GraphSelectionEnum.values();
Object[] ret = new Object[1 + selEnumVals.length];
ret[0] = functionCalls;
for (int i = 1; i <= selEnumVals.length; i++) {
switch (selEnumVals[i - 1]) { // the field i+1 contains enum value i, because field 0 is reserved for the number of function calls
// currentBest, currentWorst, runBest, currentBestFeasible, runBestFeasible, avgPopDistance, maxPopDistance;
case currentBest:
ret[i] = currentBestFit[defaultFitCriterion];
break;
case meanFit:
ret[i] = (currentMeanFit == null) ? Double.NaN : currentMeanFit[defaultFitCriterion];
break;
case currentWorst:
ret[i] = (currentWorstFit == null) ? Double.NaN : currentWorstFit[defaultFitCriterion];
break;
case runBest:
ret[i] = bestOfRunIndy.getFitness()[defaultFitCriterion];
break;
case currentBestFeasible:
ret[i] = (currentBestFeasibleFit == null) ? Double.NaN : currentBestFeasibleFit[defaultFitCriterion];
break;
case runBestFeasible:
ret[i] = (bestOfRunFeasibleIndy == null) ? Double.NaN : bestOfRunFeasibleIndy.getFitness()[defaultFitCriterion];
break;
case avgEucPopDistance:
ret[i] = currentAvgEucDistInPop;
break;
case maxEucPopDistance:
ret[i] = currentMaxEucDistInPop;
break;
case avgPopMetricDist:
ret[i] = currentAvgPopDistMetric;
break;
case maxPopMetricDist:
ret[i] = currentMaxPopDistMetric;
break;
}
}
// all standard fields should be filled now
return ret;
}
/**
* Assemble a list of data fields which should be traced by the statistics class.
* Both internal fields as well as external informer data are collected in this list.
* It should be consistent with the getOutputHeader method, which provides the
* names of the corresponding fields in the same order.
* The length of this list depends on the field selection state.
*
* @param informerList
* @param pop
* @return
* @see #getOutputHeaderFieldNames(java.util.List) (List)
*/
protected List<Object> getOutputValues(List<InterfaceAdditionalPopulationInformer> informerList, PopulationInterface pop) {
LinkedList<Object> values = new LinkedList<>();
values.addAll(Arrays.asList(getSimpleOutputValues()));
if (informerList != null) {
for (InterfaceAdditionalPopulationInformer informer : informerList) {
List<Object> reqList = Arrays.asList(informer.getAdditionalDataValue(pop));
values.addAll(reqList);
}
}
// remove those which are not requested
Iterator<Object> iter = values.iterator();
int cnt = 0;
iter.next(); // skip the first field (function calls) which is not regarded here
if (!lastIsShowFull) {
while (iter.hasNext()) {
iter.next();
if (!isRequestedField(cnt++)) {
iter.remove();
}
}
}
return values;
}
/**
* Collect additional info header and (optionally) meta information for the fields selected.
* The length of this list depends on the field selection state.
*
* @param informerList
* @param metaInfo if non null, the meta info strings are returned in this list
* @return
*/
protected List<String> getAdditionalHeaderMetaInfo(List<InterfaceAdditionalPopulationInformer> informerList, List<String> metaInfo) {
LinkedList<String> headers = new LinkedList<>();
if (metaInfo != null && (metaInfo.size() > 0)) {
System.err.println("Warning, metaInfo list should be empty in AbstractStatistics.getAdditionalHeaderMetaInfo");
}
for (InterfaceAdditionalPopulationInformer informer : informerList) {
headers.addAll(Arrays.asList(informer.getAdditionalDataHeader()));
if (metaInfo != null) {
metaInfo.addAll(Arrays.asList(informer.getAdditionalDataInfo()));
}
}
Iterator<String> hIter = headers.iterator();
Iterator<String> mIter = (metaInfo != null) ? metaInfo.iterator() : null;
if (!lastIsShowFull) {
while (hIter.hasNext()) {
if (mIter != null && mIter.hasNext()) {
mIter.next();
}
if (!isRequestedAdditionalField(hIter.next())) {
hIter.remove();
if (mIter != null && mIter.hasNext()) {
mIter.remove();
}
}
}
}
return headers;
}
/**
* Take the output values and convert them to a concatenated String and a Double array.
* The array will have null entries whenever a field contained non-primitive numeric types (such
* as arrays or other non-numeric data).
* The string concatenation uses the textFieldDelimiter of the instance.
*
* @param informerList
* @param pop
* @return
*/
protected Pair<String, Object[]> getOutputData(List<InterfaceAdditionalPopulationInformer> informerList, PopulationInterface pop) {
List<Object> statValues = getOutputValues(informerList, pop);
String statValuesString = StringTools.concatValues(statValues, textFieldDelimiter);
return new Pair<>(statValuesString, statValues.toArray(new Object[statValues.size()]));
}
/**
* @deprecated The method {@link #createNextGenerationPerformed(eva2.optimization.population.PopulationInterface, eva2.optimization.strategies.InterfaceOptimizer, java.util.List)} should be used instead.
*/
@Override
public synchronized void createNextGenerationPerformed(double[] bestFit,
double[] worstFit, int calls) {
functionCalls = calls;
currentBestFit = bestFit;
currentWorstFit = worstFit;
currentBestFeasibleFit = null;
currentMeanFit = null;
if (firstPlot) {
initializePlots(null, null);
firstPlot = false;
}
if ((iterationCounter == 0) && printHeaderByVerbosity()) {
printToTextListener(getOutputHeaderFieldNamesAsString(null) + '\n');
}
if (doTextOutput() && printLineByVerbosity(calls)) {
Pair<String, Object[]> addInfo = getOutputData(null, null);
printToTextListener(addInfo.head() + '\n');
if (addInfo.tail() != null) {
statDataSumOverAll = updateSum(statDataSumOverAll, ToolBox.parseDoubles(addInfo.tail()));
}
}
plotCurrentResults();
iterationCounter++;
}
/**
* Add the given array to the member array. Do some checks etc.
* If a resultSum array is provided, it is used to add the info and returned. Otherwise
* a new array is allocated.
*
* @param curInfo
*/
private static Double[] updateSum(Double[] resultSum, Double[] curInfo) {
if (resultSum == null) {
resultSum = curInfo.clone();
} else {
if (curInfo.length != resultSum.length) {
System.err.println("Error in AbstractStatistics.updateAdditionalInfo: mismatching info arrays!");
} else {
for (int i = 0; i < curInfo.length; i++) {
if (resultSum[i] == null || (curInfo[i] == null)) {
resultSum[i] = null;
} else {
resultSum[i] += curInfo[i];
}
}
}
}
return resultSum;
}
/**
* If the population returns a specific data array, this method is called instead of doing standard output
*
* @param pop
* @param informerList
*/
public abstract void plotSpecificData(PopulationInterface pop, List<InterfaceAdditionalPopulationInformer> informerList);
protected abstract void plotCurrentResults();
/**
* Called at the very first (multirun mode) plot of a fitness curve.
*/
protected abstract void initializePlots(PopulationInterface pop, List<InterfaceAdditionalPopulationInformer> informerList);
/**
* To set a list of informers (even before the actual run is started).
*
* @param informerList
*/
public void setInitialInformerList(List<InterfaceAdditionalPopulationInformer> informerList) {
lastInformerList = informerList;
}
/**
* Collect statistical data for the given population, such as best individual, best fitness,
* population measures.
* This should be called exactly once per generation.
*
* @param pop
*/
private void collectPopData(PopulationInterface pop) {
bestCurrentIndy = pop.getBestIndividual().getClone();
if ((bestIndyAllRuns == null) || (secondIsBetter(bestIndyAllRuns, bestCurrentIndy))) {
bestIndyAllRuns = bestCurrentIndy;
}
if ((bestOfRunIndy == null) || (secondIsBetter(bestOfRunIndy, bestCurrentIndy))) {
bestOfRunIndy = bestCurrentIndy;
}
if (bestCurrentIndy == null) {
System.err.println("createNextGenerationPerformed BestInd==null");
}
currentBestFit = bestCurrentIndy.getFitness().clone();
if (currentBestFit == null) {
System.err.println("BestFitness==null !");
}
if (pop instanceof Population) {
AbstractEAIndividual curBestFeasible = ((Population) pop).getBestFeasibleIndividual(-1);
if (curBestFeasible != null) { // a feasible ind. was found!
if (currentBestFeasibleFit == null) { // feasible indy found for the first time
numOfRunsFeasibleFound++;
feasibleFoundAfter = pop.getFunctionCalls();
if (feasibleFoundAfterSum < 0) {
feasibleFoundAfterSum = 0.;
} // initial signaling value was -1.
feasibleFoundAfterSum += feasibleFoundAfter;
}
currentBestFeasibleFit = curBestFeasible.getFitness().clone();
if ((bestOfRunFeasibleIndy == null) || (secondIsBetter(bestOfRunFeasibleIndy, curBestFeasible))) {
bestOfRunFeasibleIndy = (AbstractEAIndividual) curBestFeasible.clone();
}
if ((bestFeasibleAllRuns == null) || (secondIsBetter(bestFeasibleAllRuns, bestOfRunFeasibleIndy))) {
bestFeasibleAllRuns = bestOfRunFeasibleIndy;
}
}
} else {
System.err.println("INVALID POPULATION (AbstractStatistics)");
}
// collect these data fields only if requested by the user
if (lastIsShowFull || GraphSelectionEnum.doPlotMean(lastFieldSelection)) {
currentMeanFit = pop.getMeanFitness().clone();
} else {
currentMeanFit = null;
}
if (lastIsShowFull || GraphSelectionEnum.doPlotWorst(lastFieldSelection)) {
currentWorstFit = pop.getWorstIndividual().getFitness().clone();
} else {
currentWorstFit = null;
}
functionCalls = pop.getFunctionCalls();
if (lastIsShowFull || GraphSelectionEnum.doPlotAvgEucDist(lastFieldSelection)
|| GraphSelectionEnum.doPlotMaxEucDist(lastFieldSelection)) {
double[] measures = ((Population) pop).getPopulationMeasures(null);
if (measures != null) {
currentAvgEucDistInPop = measures[0];
currentMaxEucDistInPop = measures[2];
}
}
if (lastIsShowFull || GraphSelectionEnum.doPlotAvgPopMetricDist(lastFieldSelection)
|| GraphSelectionEnum.doPlotMaxPopMetricDist(lastFieldSelection)) {
double[] measures = pop.getPopulationMeasures();
if (measures != null) {
currentAvgPopDistMetric = measures[0];
currentMaxPopDistMetric = measures[2];
}
}
}
public String[] getCurrentFieldHeaders() {
StringSelection fSel = statisticsParameter.getFieldSelection();
return fSel.getSelected();
}
/**
* Do some data collection on the population.
*/
@Override
public synchronized void createNextGenerationPerformed(PopulationInterface pop, InterfaceOptimizer opt, List<InterfaceAdditionalPopulationInformer> informerList) {
lastInformerList = informerList;
if (resultOut != null) {
resultOut.flush();
}
if (firstPlot) {
initializePlots(pop, informerList);
firstPlot = false;
currentBestFeasibleFit = null;
}
if (pop.getSpecificData() != null) { // this is more or less deprecated. the standard population implementation will always return null. However the ES module wont
plotSpecificData(pop, informerList);
return;
}
collectPopData(pop);
if (iterationCounter == 0) {
String headerLine = StringTools.concatFields(currentStatHeader, textFieldDelimiter);
if (printHeaderByVerbosity()) {
printToTextListener(headerLine + '\n');
}
}
lastSols = (opt != null) ? new Population(opt.getAllSolutions().getSolutions()) : pop;
Pair<String, Object[]> addData = getOutputData(informerList, lastSols);
if (doTextOutput()) { // this is where the text output is actually written
if (printLineByVerbosity(iterationCounter)) {
printToTextListener(addData.head() + '\n');
}
}
currentStatObjectData = addData.tail();
currentStatDoubleData = ToolBox.parseDoubles(currentStatObjectData);
if (currentStatObjectData != null) {
statDataSumOverAll = updateSum(statDataSumOverAll, currentStatDoubleData); // this adds up all data of a single run
} else {
System.err.println("Warning in AbstractStatistics!");
}
if (sumDataCollection != null) {
// Collect average data
Double[] sumDataEntry = null;
if ((optRunsPerformed == 0) && (sumDataCollection.size() <= iterationCounter)) {
// in the first run, newly allocate the arrays
// assume that all later data sets will have the same format
sumDataEntry = currentStatDoubleData.clone();
sumDataCollection.add(sumDataEntry);
} else {
if (sumDataCollection.size() <= iterationCounter) {// bad case!
// may happen for dynamic pop-sizes, e.g. in Tribes, when runs do not necessarily send the
// "generation performed" event the same number of times.
// thus: dont do an update for events that are "too late"
sumDataEntry = null;
} else {
sumDataEntry = sumDataCollection.get(iterationCounter);
}
if (sumDataEntry != null) {
updateSum(sumDataEntry, currentStatDoubleData);
} // this adds up data of a single iteration across multiple runs
}
}
plotCurrentResults();
fireDataListeners();
if (resultOut != null) {
resultOut.flush();
}
iterationCounter++;
}
/**
* Returns true if the given iteration is a verbose one according to StatsParameter - meaning
* that full iteration data should be plotted.
*
* @param iteration
* @return
*/
private boolean printLineByVerbosity(int iteration) {
return (statisticsParameter.getOutputVerbosity() == InterfaceStatisticsParameters.OutputVerbosity.ALL)
|| ((statisticsParameter.getOutputVerbosity() == InterfaceStatisticsParameters.OutputVerbosity.KTH_IT)
&& (isKthRun(iteration, statisticsParameter.getOutputVerbosityK())));
}
private boolean printRunIntroVerbosity() {
return (statisticsParameter.getOutputVerbosity() == InterfaceStatisticsParameters.OutputVerbosity.ALL) ||
(statisticsParameter.getOutputVerbosity() == InterfaceStatisticsParameters.OutputVerbosity.KTH_IT)
|| (optRunsPerformed == 0 && (statisticsParameter.getOutputVerbosity() != InterfaceStatisticsParameters.OutputVerbosity.NONE));
}
private boolean printRunStoppedVerbosity() {
return statisticsParameter.getOutputVerbosity() == InterfaceStatisticsParameters.OutputVerbosity.KTH_IT ||
statisticsParameter.getOutputVerbosity() == InterfaceStatisticsParameters.OutputVerbosity.ALL;
}
private boolean printFinalVerbosity() {
return (statisticsParameter.getOutputVerbosity() != InterfaceStatisticsParameters.OutputVerbosity.NONE);
}
private boolean isKthRun(int i, int k) {
// ingeniously shifting i by two since the stats counter starts at 0
// after two evaluations have already happened: initialization and first optimization
// this allows the last iteration to be within the displayed set if k is a divisor of whole iterations as expected
if ((i == 0) || (k == 0)) {
return true;
} else {
if (i <= 2) {
return (i % k) == 0;
} // show more at the beginning (always first time)
else {
return ((i + 2) % k) == 0;
}
}
}
private boolean printHeaderByVerbosity() {
return (statisticsParameter.getOutputVerbosity() == InterfaceStatisticsParameters.OutputVerbosity.ALL) ||
(statisticsParameter.getOutputVerbosity() == InterfaceStatisticsParameters.OutputVerbosity.KTH_IT);
}
private static void divideMean(Double[] mean, double d) {
for (int j = 0; j < mean.length; j++) {
if (mean[j] != null) {
mean[j] /= d;
}
}
}
/**
* Compare two individual interfaces and return true if the second one is dominant.
*
* @param indy1
* @param indy2
* @return true if the second individual is dominant, else false
*/
public static boolean secondIsBetter(IndividualInterface indy1, IndividualInterface indy2) {
if (indy1 == null) {
return true;
}
if (indy2 == null) {
return false;
}
if (indy1 instanceof AbstractEAIndividual) {
return ((AbstractEAIndividual) indy2).isDominatingDebConstraints((AbstractEAIndividual) indy1);
}
return (indy2.isDominant(indy1));
}
@Override
public double[] getBestFitness() {
return currentBestFit;
}
@Override
public IndividualInterface getBestSolution() {
return bestIndyAllRuns;
}
@Override
public IndividualInterface getRunBestSolution() {
return bestOfRunIndy;
}
public int getFitnessCalls() {
return functionCalls;
}
}