Cleaning up resources (3) Some were moved to the ES/Prob package, some didnt contain real information and were deleted.
This commit is contained in:
parent
2221ac4a1d
commit
3e4caef0a7
@ -1,13 +0,0 @@
|
|||||||
<html>
|
|
||||||
<head>
|
|
||||||
<title>Epsilon SV-Regression</title>
|
|
||||||
</head>
|
|
||||||
<body>
|
|
||||||
|
|
||||||
<h1 align="center">Epsilon SV-Regression</h1>
|
|
||||||
<center>
|
|
||||||
</center><br>
|
|
||||||
Please read the JavaEvA manual for a detailed description.
|
|
||||||
</ul>
|
|
||||||
</body>
|
|
||||||
</html>
|
|
@ -1,16 +0,0 @@
|
|||||||
<html>
|
|
||||||
<head>
|
|
||||||
<title>ESIndividual</title>
|
|
||||||
</head>
|
|
||||||
<body>
|
|
||||||
|
|
||||||
<h1 align="center">ESIndividual</h1>
|
|
||||||
<center>
|
|
||||||
</center><br>
|
|
||||||
This element represents the properties of an individual.
|
|
||||||
The most important evolutionary operator of an ES is
|
|
||||||
the mutation of the objective variables representing
|
|
||||||
the solution of the problem, which is responsible
|
|
||||||
for the self-adaptation capability of the ES
|
|
||||||
</body>
|
|
||||||
</html>
|
|
@ -1,17 +0,0 @@
|
|||||||
<html>
|
|
||||||
<head>
|
|
||||||
<title>f_1 : Sphere function</title>
|
|
||||||
</head>
|
|
||||||
<body>
|
|
||||||
<h1 align="center">ESInitPopulationSpaceFilling</h1>
|
|
||||||
<center>
|
|
||||||
</center><br>
|
|
||||||
ESPara contains the information describing the Evolution Strategy:
|
|
||||||
<ul>
|
|
||||||
<li>The problem to be solved.</li>
|
|
||||||
<li>A seed value for the random number genarator.</li>
|
|
||||||
<li>A termination criterium for the algorithm.</li>
|
|
||||||
<li>The used population.</li>
|
|
||||||
</ul>
|
|
||||||
</body>
|
|
||||||
</html>
|
|
@ -1,10 +0,0 @@
|
|||||||
<html>
|
|
||||||
<head>
|
|
||||||
<title>ESInitPopulationRandom</title>
|
|
||||||
</head>
|
|
||||||
<body>
|
|
||||||
|
|
||||||
<h1 align="center">ESInitPopulationRandom</h1>
|
|
||||||
<center>
|
|
||||||
</center><br>
|
|
||||||
Here you can specify the number of individuals, which are randomly initialized.
|
|
@ -1,18 +0,0 @@
|
|||||||
<html>
|
|
||||||
<head>
|
|
||||||
<title>f_1 : Sphere function</title>
|
|
||||||
</head>
|
|
||||||
<body>
|
|
||||||
|
|
||||||
<h1 align="center">ESInitPopulationSpaceFilling</h1>
|
|
||||||
<center>
|
|
||||||
</center><br>
|
|
||||||
ESPara contains the information describing the Evolution Strategy:
|
|
||||||
<ul>
|
|
||||||
<li>The problem to be solved.</li>
|
|
||||||
<li>A seed value for the random number genarator.</li>
|
|
||||||
<li>A termination criterium for the algorithm.</li>
|
|
||||||
<li>The used population.</li>
|
|
||||||
</ul>
|
|
||||||
</body>
|
|
||||||
</html>
|
|
@ -1,17 +0,0 @@
|
|||||||
<html>
|
|
||||||
<head>
|
|
||||||
<title>f_1 : Sphere function</title>
|
|
||||||
</head>
|
|
||||||
<body>
|
|
||||||
<h1 align="center">Parameters for the Evolution Strategy</h1>
|
|
||||||
<center>
|
|
||||||
</center><br>
|
|
||||||
The Java Class ESPara contains the information describing an Evolution Strategy (ES):
|
|
||||||
<ul>
|
|
||||||
<li>The problem to be solved.</li>
|
|
||||||
<li>A seed value for the random number generator.</li>
|
|
||||||
<li>A termination criterion for the algorithm.</li>
|
|
||||||
<li>The ES population.</li>
|
|
||||||
</ul>
|
|
||||||
</body>
|
|
||||||
</html>
|
|
@ -1,18 +0,0 @@
|
|||||||
<html>
|
|
||||||
<head>
|
|
||||||
<title>ESPopulation</title>
|
|
||||||
</head>
|
|
||||||
<body>
|
|
||||||
<h1 align="center">ESPopulation</h1>
|
|
||||||
<center>
|
|
||||||
</center><br>
|
|
||||||
ESPopulation contains the information describing an Evolution Strategy (ES):
|
|
||||||
<ul>
|
|
||||||
<li>A prototype of an individual (contains mutation operator).</li>
|
|
||||||
<li>The population size of the parents: lambda.</li>
|
|
||||||
<li>The population size of the children: mu.</li>
|
|
||||||
<li>A recombination operator.</li>
|
|
||||||
<li>A fitness based selection operator.</li>
|
|
||||||
</ul>
|
|
||||||
</body>
|
|
||||||
</html>
|
|
@ -1,18 +0,0 @@
|
|||||||
<html>
|
|
||||||
<head>
|
|
||||||
<title>ESRecombination</title>
|
|
||||||
</head>
|
|
||||||
<body>
|
|
||||||
|
|
||||||
<h1 align="center">ESRecombination</h1>
|
|
||||||
<center>
|
|
||||||
</center><br>
|
|
||||||
The recombination operator has the following editable properties:
|
|
||||||
<ul>
|
|
||||||
<li>strategy for recombination of the strategy parameters of the mutation operators..</li>
|
|
||||||
<li>strategy for recombination of the objectives of an individual..</li>
|
|
||||||
<li>rho = number of parents, which recombinate to one offspring individual..</li>
|
|
||||||
<li>strategy for selecting the input individuals for one recombination.</li>
|
|
||||||
</ul>
|
|
||||||
</body>
|
|
||||||
</html>
|
|
@ -1,12 +0,0 @@
|
|||||||
<html>
|
|
||||||
<head>
|
|
||||||
<title>ES Comma Selection</title>
|
|
||||||
</head>
|
|
||||||
<body>
|
|
||||||
|
|
||||||
<h1 align="center">ES Comma Selection Operator</h1>
|
|
||||||
<center>
|
|
||||||
</center><br>
|
|
||||||
The best mu individuals are selected from lambda offspring individuals.
|
|
||||||
</body>
|
|
||||||
</html>
|
|
@ -1,26 +0,0 @@
|
|||||||
<html>
|
|
||||||
<head>
|
|
||||||
<title>ES - Median Selection </title>
|
|
||||||
</head>
|
|
||||||
<body>
|
|
||||||
|
|
||||||
<h1 align="center">ES Median Selection Strategy</h1>
|
|
||||||
<center>
|
|
||||||
</center><br>
|
|
||||||
The main application field of the Median Selection Strategy
|
|
||||||
operator are steady state algorithms.
|
|
||||||
A standard steady-state ES is equivalent to a (mu + 1) ES.
|
|
||||||
Only one individual is generated and evaluated
|
|
||||||
at each step and gets immediately integrated into the population.
|
|
||||||
Compared to generation based algorithms the information of
|
|
||||||
new evaluated individuals can be integrated directly into the optimization process.
|
|
||||||
The idea is to approximate the selection mechanism
|
|
||||||
of a standard (mu,lambda) ES, by
|
|
||||||
using a fitness buffer containing
|
|
||||||
fitness values of the last n evaluations.
|
|
||||||
Given a relative rate of acceptance r=mu\lambda.
|
|
||||||
A newly evaluated individual substitutes the worst individual
|
|
||||||
of the population, if it has a better fitness than the r*n best individuals
|
|
||||||
in the buffer.
|
|
||||||
</body>
|
|
||||||
</html>
|
|
@ -1,18 +0,0 @@
|
|||||||
<html>
|
|
||||||
<head>
|
|
||||||
<title>f_1 : Sphere function</title>
|
|
||||||
</head>
|
|
||||||
<body>
|
|
||||||
|
|
||||||
<h1 align="center">ESSelectionStrategyMedian</h1>
|
|
||||||
<center>
|
|
||||||
</center><br>
|
|
||||||
ESPara contains the information describing the Evolution Strategy:
|
|
||||||
<ul>
|
|
||||||
<li>The problem to be solved.</li>
|
|
||||||
<li>A seed value for the random number genarator.</li>
|
|
||||||
<li>A termination criterium for the algorithm.</li>
|
|
||||||
<li>The used population.</li>
|
|
||||||
</ul>
|
|
||||||
</body>
|
|
||||||
</html>
|
|
@ -1,13 +0,0 @@
|
|||||||
<html>
|
|
||||||
<head>
|
|
||||||
<title>Plus Selection Strategy</title>
|
|
||||||
</head>
|
|
||||||
<body>
|
|
||||||
|
|
||||||
<h1 align="center">ES Plus Selection Operator</h1>
|
|
||||||
<center>
|
|
||||||
</center><br>
|
|
||||||
The best mu individuals are selected from the
|
|
||||||
aggregation of the lambda offspring individuals and the mu parents.
|
|
||||||
</body>
|
|
||||||
</html>
|
|
@ -1,12 +0,0 @@
|
|||||||
<html>
|
|
||||||
<head>
|
|
||||||
<title>Gauss Process Regression Model</title>
|
|
||||||
</head>
|
|
||||||
<body>
|
|
||||||
<h1 align="center">Gauss Process Regression Model</h1>
|
|
||||||
<center>
|
|
||||||
</center><br>
|
|
||||||
Please read the JavaEvA manual for a detailed description.
|
|
||||||
</ul>
|
|
||||||
</body>
|
|
||||||
</html>
|
|
@ -1,28 +0,0 @@
|
|||||||
<html>
|
|
||||||
<head>
|
|
||||||
<title>Model Assisted Evolution Strategy - MAES</title>
|
|
||||||
</head>
|
|
||||||
<body>
|
|
||||||
|
|
||||||
<h1 align="center">Model Assisted Evolution Strategy - MAES</h1>
|
|
||||||
<center>
|
|
||||||
</center><br>
|
|
||||||
In the pre-selection concept lambdaPlus>lambda
|
|
||||||
individuals are generated from mu parents.
|
|
||||||
All lambdaPlus individuals are evaluated by a
|
|
||||||
surrogate model of the fitness landscape and the estimated
|
|
||||||
fitness values are used to pre-select the lambda
|
|
||||||
best individuals, which will be evaluated with
|
|
||||||
the real fitness function.
|
|
||||||
The model is trained at the beginning with a randomly created
|
|
||||||
initial population and is updated after each generation
|
|
||||||
step with lambda new fitness cases.
|
|
||||||
The idea behind this approach is that only the
|
|
||||||
most promising individuals with a good fitness prediction
|
|
||||||
are evaluated with the true fitness function.
|
|
||||||
|
|
||||||
Every generation a new offspring lambda is evaluated with the real fitness function,
|
|
||||||
the model is updated with this information of \lambda fitness cases.
|
|
||||||
|
|
||||||
</body>
|
|
||||||
</html>
|
|
@ -1,16 +0,0 @@
|
|||||||
<html>
|
|
||||||
<head>
|
|
||||||
<title>MAESIndividual</title>
|
|
||||||
</head>
|
|
||||||
<body>
|
|
||||||
|
|
||||||
<h1 align="center">MAESIndividual</h1>
|
|
||||||
<center>
|
|
||||||
</center><br>
|
|
||||||
This element represents the properties of an individual.
|
|
||||||
The most important evolutionary operator of an ES is
|
|
||||||
the mutation of the objective variables representing
|
|
||||||
the solution of the problem, which is responsible
|
|
||||||
for the self-adaptation capability of the ES
|
|
||||||
</body>
|
|
||||||
</html>
|
|
@ -1,17 +0,0 @@
|
|||||||
<html>
|
|
||||||
<head>
|
|
||||||
<title>MAESPara</title>
|
|
||||||
</head>
|
|
||||||
<body>
|
|
||||||
<h1 align="center">MAESPara</h1>
|
|
||||||
<center>
|
|
||||||
</center><br>
|
|
||||||
MAESPara contains the information describing an Evolution Strategy (ES):
|
|
||||||
<ul>
|
|
||||||
<li>The problem to be solved.</li>
|
|
||||||
<li>A seed value for the random number generator.</li>
|
|
||||||
<li>A termination criterion for the algorithm.</li>
|
|
||||||
<li>The MAES population.</li>
|
|
||||||
</ul>
|
|
||||||
</body>
|
|
||||||
</html>
|
|
@ -1,23 +0,0 @@
|
|||||||
<html>
|
|
||||||
<head>
|
|
||||||
<title>MAESPopulation</title>
|
|
||||||
</head>
|
|
||||||
<body>
|
|
||||||
<h1 align="center">Model Assisted Population</h1>
|
|
||||||
<center>
|
|
||||||
</center><br>
|
|
||||||
The MAESPopulation panel contains the information describing the Model Assisted Evolution Strategy (MAES):
|
|
||||||
<ul>
|
|
||||||
<li>A prototype of an individual (contains mutation operator).</li>
|
|
||||||
<li>The size of the model pre-selected individuals: lambdaPlus>=lambda.
|
|
||||||
For lambdaPlus=lambda you have no model impact.</li>
|
|
||||||
<li>The regression model for fitness prediction.</li>
|
|
||||||
<li>The model size is given by the number of last evaluated individuals,
|
|
||||||
which are used to train the model.</li>
|
|
||||||
<li>The population size of the parents: lambda.</li>
|
|
||||||
<li>The population size of the children: mu.</li>
|
|
||||||
<li>A recombination operator.</li>
|
|
||||||
<li>A fitness based selection operator.</li>
|
|
||||||
</ul>
|
|
||||||
</body>
|
|
||||||
</html>
|
|
@ -1,18 +0,0 @@
|
|||||||
<html>
|
|
||||||
<head>
|
|
||||||
<title>MAESRecombination</title>
|
|
||||||
</head>
|
|
||||||
<body>
|
|
||||||
|
|
||||||
<h1 align="center">MAESRecombination</h1>
|
|
||||||
<center>
|
|
||||||
</center><br>
|
|
||||||
The recombination operator has the following editable properties:
|
|
||||||
<ul>
|
|
||||||
<li>strategy for recombination of the strategy parameters of the mutation operators..</li>
|
|
||||||
<li>strategy for recombination of the objectives of an individual..</li>
|
|
||||||
<li>rho = number of parents, which recombinate to one offspring individual..</li>
|
|
||||||
<li>strategy for selecting the input individuals for one recombination.</li>
|
|
||||||
</ul>
|
|
||||||
</body>
|
|
||||||
</html>
|
|
@ -1,12 +0,0 @@
|
|||||||
<html>
|
|
||||||
<head>
|
|
||||||
<title>MAES Comma Selection</title>
|
|
||||||
</head>
|
|
||||||
<body>
|
|
||||||
|
|
||||||
<h1 align="center">MAES Comma Selection Operator</h1>
|
|
||||||
<center>
|
|
||||||
</center><br>
|
|
||||||
The best mu individuals are selected from lambda offspring individuals.
|
|
||||||
</body>
|
|
||||||
</html>
|
|
@ -1,32 +0,0 @@
|
|||||||
<html>
|
|
||||||
<head>
|
|
||||||
<title>MAES - Median Selection </title>
|
|
||||||
</head>
|
|
||||||
<body>
|
|
||||||
|
|
||||||
<h1 align="center">MAES Median Selection Strategy</h1>
|
|
||||||
<center>
|
|
||||||
</center><br>
|
|
||||||
The main application field of the Median Selection Strategy
|
|
||||||
operator are steady state algorithms.
|
|
||||||
A standard steady-state ES is equivalent to a (mu + 1) ES.
|
|
||||||
Only one individual is generated and evaluated
|
|
||||||
at each step and gets immediately integrated into the population.
|
|
||||||
Compared to generation based algorithms the information of
|
|
||||||
new evaluated individuals can be integrated directly into the optimization process.
|
|
||||||
The idea is to approximate the selection mechanism
|
|
||||||
of a standard (mu,lambda) ES, by
|
|
||||||
using a fitness buffer containing
|
|
||||||
fitness values of the last n evaluations.
|
|
||||||
Given a relative rate of acceptance r=mu\lambda.
|
|
||||||
A newly evaluated individual substitutes the worst individual
|
|
||||||
of the population, if it has a better fitness than the r*n best individuals
|
|
||||||
in the buffer.
|
|
||||||
<ul>
|
|
||||||
<li>The problem to be solved.</li>
|
|
||||||
<li>A seed value for the random number genarator.</li>
|
|
||||||
<li>A termination criterium for the algorithm.</li>
|
|
||||||
<li>The used population.</li>
|
|
||||||
</ul>
|
|
||||||
</body>
|
|
||||||
</html>
|
|
@ -1,13 +0,0 @@
|
|||||||
<html>
|
|
||||||
<head>
|
|
||||||
<title>Plus Selection Strategy</title>
|
|
||||||
</head>
|
|
||||||
<body>
|
|
||||||
|
|
||||||
<h1 align="center">MAES Plus Selection Operator</h1>
|
|
||||||
<center>
|
|
||||||
</center><br>
|
|
||||||
The best mu individuals are selected from the
|
|
||||||
aggredation of the lambda offspring individuals and the mu parents.
|
|
||||||
</body>
|
|
||||||
</html>
|
|
@ -1,13 +0,0 @@
|
|||||||
<html>
|
|
||||||
<head>
|
|
||||||
<title>CMA Mutation</title>
|
|
||||||
</head>
|
|
||||||
<body>
|
|
||||||
|
|
||||||
<h1 align="center">CMA Mutation</h1>
|
|
||||||
<center>
|
|
||||||
</center><br>
|
|
||||||
Please read the JavaEvA manual for a detailed description.
|
|
||||||
</ul>
|
|
||||||
</body>
|
|
||||||
</html>
|
|
@ -1,13 +0,0 @@
|
|||||||
<html>
|
|
||||||
<head>
|
|
||||||
<title>f_1 : Sphere function</title>
|
|
||||||
</head>
|
|
||||||
<body>
|
|
||||||
|
|
||||||
<h1 align="center">MutationMSRGlobal</h1>
|
|
||||||
<center>
|
|
||||||
</center><br>
|
|
||||||
Please read the JavaEvA manual for a detailed description.
|
|
||||||
</ul>
|
|
||||||
</body>
|
|
||||||
</html>
|
|
@ -1,15 +0,0 @@
|
|||||||
<html>
|
|
||||||
<head>
|
|
||||||
<title>f_1 : Sphere function</title>
|
|
||||||
</head>
|
|
||||||
<body>
|
|
||||||
|
|
||||||
<h1 align="center">MutationMSRSeperate</h1>
|
|
||||||
<center>
|
|
||||||
</center><br>
|
|
||||||
<center>
|
|
||||||
</center><br>
|
|
||||||
Please read the JavaEvA manual for a detailed description.
|
|
||||||
</ul>
|
|
||||||
</body>
|
|
||||||
</html>
|
|
@ -1,13 +0,0 @@
|
|||||||
<html>
|
|
||||||
<head>
|
|
||||||
<title>MVA Mutation</title>
|
|
||||||
</head>
|
|
||||||
<body>
|
|
||||||
|
|
||||||
<h1 align="center">MVA Mutation</h1>
|
|
||||||
<center>
|
|
||||||
</center><br>
|
|
||||||
Please read the JavaEvA manual for a detailed description.
|
|
||||||
</ul>
|
|
||||||
</body>
|
|
||||||
</html>
|
|
@ -1,13 +0,0 @@
|
|||||||
<html>
|
|
||||||
<head>
|
|
||||||
<title>Random Mutation</title>
|
|
||||||
</head>
|
|
||||||
<body>
|
|
||||||
|
|
||||||
<h1 align="center">Random Mutation</h1>
|
|
||||||
<center>
|
|
||||||
</center><br>
|
|
||||||
Please read the JavaEvA manual for a detailed description.
|
|
||||||
</ul>
|
|
||||||
</body>
|
|
||||||
</html>
|
|
@ -1,13 +0,0 @@
|
|||||||
<html>
|
|
||||||
<head>
|
|
||||||
<title>Success Rule Mutation</title>
|
|
||||||
</head>
|
|
||||||
<body>
|
|
||||||
|
|
||||||
<h1 align="center">Success Rule</h1>
|
|
||||||
<center>
|
|
||||||
</center><br>
|
|
||||||
Please read the JavaEvA manual for a detailed description.
|
|
||||||
</ul>
|
|
||||||
</body>
|
|
||||||
</html>
|
|
@ -1,13 +0,0 @@
|
|||||||
<html>
|
|
||||||
<head>
|
|
||||||
<title>NU SV-Regression</title>
|
|
||||||
</head>
|
|
||||||
<body>
|
|
||||||
|
|
||||||
<h1 align="center">NU SV-Regression</h1>
|
|
||||||
<center>
|
|
||||||
</center><br>
|
|
||||||
Please read the JavaEvA manual for a detailed description.
|
|
||||||
</ul>
|
|
||||||
</body>
|
|
||||||
</html>
|
|
@ -1,13 +0,0 @@
|
|||||||
<html>
|
|
||||||
<head>
|
|
||||||
<title>Poly model</title>
|
|
||||||
</head>
|
|
||||||
<body>
|
|
||||||
|
|
||||||
<h1 align="center">Poly model</h1>
|
|
||||||
<center>
|
|
||||||
</center><br>
|
|
||||||
Please read the JavaEvA manual for a detailed description.
|
|
||||||
</ul>
|
|
||||||
</body>
|
|
||||||
</html>
|
|
@ -1,18 +0,0 @@
|
|||||||
<html>
|
|
||||||
<head>
|
|
||||||
<title>f_1 : Sphere function</title>
|
|
||||||
</head>
|
|
||||||
<body>
|
|
||||||
|
|
||||||
<h1 align="center">PolyRBFJama</h1>
|
|
||||||
<center>
|
|
||||||
</center><br>
|
|
||||||
ESPara contains the information describing the Evolution Strategy:
|
|
||||||
<ul>
|
|
||||||
<li>The problem to be solved.</li>
|
|
||||||
<li>A seed value for the random number genarator.</li>
|
|
||||||
<li>A termination criterium for the algorithm.</li>
|
|
||||||
<li>The used population.</li>
|
|
||||||
</ul>
|
|
||||||
</body>
|
|
||||||
</html>
|
|
@ -1,13 +0,0 @@
|
|||||||
<html>
|
|
||||||
<head>
|
|
||||||
<title>RBF model</title>
|
|
||||||
</head>
|
|
||||||
<body>
|
|
||||||
|
|
||||||
<h1 align="center">RBF model</h1>
|
|
||||||
<center>
|
|
||||||
</center><br>
|
|
||||||
Please read the JavaEvA manual for a detailed description.
|
|
||||||
</ul>
|
|
||||||
</body>
|
|
||||||
</html>
|
|
Binary file not shown.
Before Width: | Height: | Size: 979 B |
Binary file not shown.
Before Width: | Height: | Size: 978 B |
@ -1,13 +0,0 @@
|
|||||||
<html>
|
|
||||||
<head>
|
|
||||||
<title>RVM model</title>
|
|
||||||
</head>
|
|
||||||
<body>
|
|
||||||
|
|
||||||
<h1 align="center">RVM model</h1>
|
|
||||||
<center>
|
|
||||||
</center><br>
|
|
||||||
Please read the JavaEvA manual for a detailed description.
|
|
||||||
</ul>
|
|
||||||
</body>
|
|
||||||
</html>
|
|
Loading…
x
Reference in New Issue
Block a user