Cosmetics.
This commit is contained in:
parent
877118b6b3
commit
aeda5a83a3
@ -16,11 +16,14 @@ import eva2.server.go.problems.B1Problem;
|
|||||||
import eva2.server.go.problems.InterfaceOptimizationProblem;
|
import eva2.server.go.problems.InterfaceOptimizationProblem;
|
||||||
import eva2.tools.math.RNG;
|
import eva2.tools.math.RNG;
|
||||||
|
|
||||||
/** This is an implementation of the CHC Adaptive Search Algorithm by Eselman. It is
|
/** This is an implementation of the CHC Adaptive Search Algorithm by Eshelman. It is
|
||||||
* limited to binary data and is based on massively distruptive crossover. I'm not
|
* limited to binary data and is based on massively disruptive crossover. I'm not
|
||||||
* shure whether i've implemented this correctly, but i definetly wasn't able to make
|
* sure whether i've implemented this correctly, but i definitely wasn't able to make
|
||||||
* it competitive to a standard GA.. *sigh*
|
* it competitive to a standard GA.. *sigh*
|
||||||
* This is a implementation of the CHC Apative Search Algorithm.
|
* This is a implementation of the CHC Adaptive Search Algorithm (Cross generational
|
||||||
|
* elitist selection, Heterogeneous recombination and Cataclysmic mutation).
|
||||||
|
* Citation:
|
||||||
|
*
|
||||||
* Copyright: Copyright (c) 2003
|
* Copyright: Copyright (c) 2003
|
||||||
* Company: University of Tuebingen, Computer Architecture
|
* Company: University of Tuebingen, Computer Architecture
|
||||||
* @author Felix Streichert
|
* @author Felix Streichert
|
||||||
|
@ -2,7 +2,6 @@ package eva2.server.go.strategies;
|
|||||||
|
|
||||||
import eva2.server.go.InterfacePopulationChangedEventListener;
|
import eva2.server.go.InterfacePopulationChangedEventListener;
|
||||||
import eva2.server.go.individuals.AbstractEAIndividual;
|
import eva2.server.go.individuals.AbstractEAIndividual;
|
||||||
import eva2.server.go.individuals.GAIndividualBinaryData;
|
|
||||||
import eva2.server.go.operators.selection.InterfaceSelection;
|
import eva2.server.go.operators.selection.InterfaceSelection;
|
||||||
import eva2.server.go.operators.selection.SelectEPTournaments;
|
import eva2.server.go.operators.selection.SelectEPTournaments;
|
||||||
import eva2.server.go.populations.InterfaceSolutionSet;
|
import eva2.server.go.populations.InterfaceSolutionSet;
|
||||||
@ -14,6 +13,8 @@ import eva2.server.go.problems.InterfaceOptimizationProblem;
|
|||||||
/** Evolutionary programming by Fogel. Works fine but is actually a quite greedy local search
|
/** Evolutionary programming by Fogel. Works fine but is actually a quite greedy local search
|
||||||
* strategy solely based on mutation. To prevent any confusion, the mutation rate is temporaily
|
* strategy solely based on mutation. To prevent any confusion, the mutation rate is temporaily
|
||||||
* set to 1.0.
|
* set to 1.0.
|
||||||
|
* Potential citation: the PhD thesis of David B. Fogel (1992).
|
||||||
|
*
|
||||||
* Copyright: Copyright (c) 2003
|
* Copyright: Copyright (c) 2003
|
||||||
* Company: University of Tuebingen, Computer Architecture
|
* Company: University of Tuebingen, Computer Architecture
|
||||||
* @author Felix Streichert
|
* @author Felix Streichert
|
||||||
@ -74,20 +75,6 @@ public class EvolutionaryProgramming implements InterfaceOptimizer, java.io.Seri
|
|||||||
population.incrGeneration();
|
population.incrGeneration();
|
||||||
}
|
}
|
||||||
|
|
||||||
/** This method will assign fitness values to all individual in the
|
|
||||||
* current population.
|
|
||||||
* @param population The population that is to be evaluated
|
|
||||||
*/
|
|
||||||
private void defaultEvaluatePopulation(Population population) {
|
|
||||||
GAIndividualBinaryData tmpIndy;
|
|
||||||
for (int i = 0; i < population.size(); i++) {
|
|
||||||
tmpIndy = (GAIndividualBinaryData) population.get(i);
|
|
||||||
tmpIndy.SetFitness(0, tmpIndy.defaultEvaulateAsMiniBits());
|
|
||||||
population.incrFunctionCalls();
|
|
||||||
}
|
|
||||||
population.incrGeneration();
|
|
||||||
}
|
|
||||||
|
|
||||||
/** This method will generate the offspring population from the
|
/** This method will generate the offspring population from the
|
||||||
* given population of evaluated individuals.
|
* given population of evaluated individuals.
|
||||||
*/
|
*/
|
||||||
|
@ -13,10 +13,15 @@ import eva2.server.go.problems.AbstractOptimizationProblem;
|
|||||||
import eva2.server.go.problems.B1Problem;
|
import eva2.server.go.problems.B1Problem;
|
||||||
import eva2.server.go.problems.InterfaceOptimizationProblem;
|
import eva2.server.go.problems.InterfaceOptimizationProblem;
|
||||||
|
|
||||||
/** Population based increamental learning in the PSM by Mommarche
|
/** Population based incremental learning in the PSM by Monmarche
|
||||||
* version with also allows to simulate ant systems due to the flexible
|
* version with also allows to simulate ant systems due to the flexible
|
||||||
* update rule of V. But both are limited to binary gentypes.
|
* update rule of V. But both are limited to binary genotypes.
|
||||||
* This is a simple implementation of Population Based Incremental Learning.
|
* This is a simple implementation of Population Based Incremental Learning.
|
||||||
|
*
|
||||||
|
* Nicolas Monmarché , Eric Ramat , Guillaume Dromel , Mohamed Slimane , Gilles Venturini:
|
||||||
|
* On the similarities between AS, BSC and PBIL: toward the birth of a new meta-heuristic.
|
||||||
|
* TecReport 215. Univ. de Tours, 1999.
|
||||||
|
*
|
||||||
* Copyright: Copyright (c) 2003
|
* Copyright: Copyright (c) 2003
|
||||||
* Company: University of Tuebingen, Computer Architecture
|
* Company: University of Tuebingen, Computer Architecture
|
||||||
* @author Felix Streichert
|
* @author Felix Streichert
|
||||||
|
Loading…
x
Reference in New Issue
Block a user