F13 doc and range modification.
This commit is contained in:
30
resources/F13Problem.html
Normal file
30
resources/F13Problem.html
Normal file
@@ -0,0 +1,30 @@
|
||||
<html>
|
||||
<head>
|
||||
<title>Schwefels's (sine root) function</title>
|
||||
</head>
|
||||
<body>
|
||||
<h1 align="center">Schwefel's (sine root) function</h1>
|
||||
<center>
|
||||
<img src="images/f13-tex-500.jpg" width="650" height="64" aling="center">
|
||||
</center>
|
||||
<p>
|
||||
Schwefel's (sine root) function is highly multimodal and has no global basin of attraction. The optimum at a fitness of f(x*)=0 lies at x*=420.9687. Schwefel's sine root is a tough challenge for any global optimizer due to the multiple distinct optima. Especially, there is a deceptive nearly optimal solution close to x=(-420.9687)<SUP>n</SUP>.
|
||||
|
||||
<p>
|
||||
|
||||
<p>
|
||||
|
||||
<img src="images/f13-schwefels-sine-root.jpg" width="667" height="493" border="2" align="center">
|
||||
<br>
|
||||
Schwefels's sine root function in 2D within the co-domain -500 <= <i>x</i> <= 500.
|
||||
<p>
|
||||
|
||||
<hr>
|
||||
More information about Ackley's function can be found at:
|
||||
<p>
|
||||
David. H. Ackley. <i>A connection machine for genetic hillclimbing.</i> Kluwer Academic Publishers, Boston, 1987.
|
||||
<p>
|
||||
Thomas Baeck. <i>Evolutionary Algorithms in Theory and Practice.</i> Oxford University Press, 1996.
|
||||
|
||||
</body>
|
||||
</html>
|
BIN
resources/images/f13-schwefels-sine-root.jpg
Executable file
BIN
resources/images/f13-schwefels-sine-root.jpg
Executable file
Binary file not shown.
After Width: | Height: | Size: 68 KiB |
BIN
resources/images/f13-tex-500.jpg
Normal file
BIN
resources/images/f13-tex-500.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 36 KiB |
@@ -13,6 +13,7 @@ public class F13Problem extends F1Problem implements InterfaceMultimodalProblem
|
||||
|
||||
public F13Problem() {
|
||||
this.m_Template = new ESIndividualDoubleData();
|
||||
setDefaultRange(500);
|
||||
}
|
||||
public F13Problem(F13Problem b) {
|
||||
super(b);
|
||||
@@ -29,14 +30,14 @@ public class F13Problem extends F1Problem implements InterfaceMultimodalProblem
|
||||
return (Object) new F13Problem(this);
|
||||
}
|
||||
|
||||
public double[][] makeRange() {
|
||||
double[][] range = new double[this.m_ProblemDimension][2];
|
||||
for (int i = 0; i < range.length; i++) {
|
||||
range[i][0] = -512.03;
|
||||
range[i][1] = 511.97;
|
||||
}
|
||||
return range;
|
||||
}
|
||||
// public double[][] makeRange() {
|
||||
// double[][] range = new double[this.m_ProblemDimension][2];
|
||||
// for (int i = 0; i < range.length; i++) {
|
||||
// range[i][0] = -512.03;
|
||||
// range[i][1] = 511.97;
|
||||
// }
|
||||
// return range;
|
||||
// }
|
||||
|
||||
/** Ths method allows you to evaluate a double[] to determine the fitness
|
||||
* @param x The n-dimensional input vector
|
||||
|
Reference in New Issue
Block a user