F13 doc and range modification.
This commit is contained in:
30
resources/F13Problem.html
Normal file
30
resources/F13Problem.html
Normal file
@@ -0,0 +1,30 @@
|
||||
<html>
|
||||
<head>
|
||||
<title>Schwefels's (sine root) function</title>
|
||||
</head>
|
||||
<body>
|
||||
<h1 align="center">Schwefel's (sine root) function</h1>
|
||||
<center>
|
||||
<img src="images/f13-tex-500.jpg" width="650" height="64" aling="center">
|
||||
</center>
|
||||
<p>
|
||||
Schwefel's (sine root) function is highly multimodal and has no global basin of attraction. The optimum at a fitness of f(x*)=0 lies at x*=420.9687. Schwefel's sine root is a tough challenge for any global optimizer due to the multiple distinct optima. Especially, there is a deceptive nearly optimal solution close to x=(-420.9687)<SUP>n</SUP>.
|
||||
|
||||
<p>
|
||||
|
||||
<p>
|
||||
|
||||
<img src="images/f13-schwefels-sine-root.jpg" width="667" height="493" border="2" align="center">
|
||||
<br>
|
||||
Schwefels's sine root function in 2D within the co-domain -500 <= <i>x</i> <= 500.
|
||||
<p>
|
||||
|
||||
<hr>
|
||||
More information about Ackley's function can be found at:
|
||||
<p>
|
||||
David. H. Ackley. <i>A connection machine for genetic hillclimbing.</i> Kluwer Academic Publishers, Boston, 1987.
|
||||
<p>
|
||||
Thomas Baeck. <i>Evolutionary Algorithms in Theory and Practice.</i> Oxford University Press, 1996.
|
||||
|
||||
</body>
|
||||
</html>
|
Reference in New Issue
Block a user