Rename SetFitness to setFitnessAt
This commit is contained in:
		| @@ -546,7 +546,7 @@ public abstract class AbstractEAIndividual implements IndividualInterface, java. | ||||
|      * @param index   The index of the fitness value to set. | ||||
|      * @param fitness The new fitness value. | ||||
|      */ | ||||
|     public void SetFitness(int index, double fitness) { | ||||
|     public void setFitnessAt(int index, double fitness) { | ||||
|         if (this.fitness.length > index) { | ||||
|             this.fitness[index] = fitness; | ||||
|         } else { | ||||
|   | ||||
| @@ -81,7 +81,7 @@ public abstract class AbstractConstraint implements InterfaceDoubleConstraint, S | ||||
|                 if (v > 0) { | ||||
|                     indy.setMarkPenalized(true); | ||||
|                     for (int i = 0; i < indy.getFitness().length; i++) { | ||||
|                         indy.SetFitness(i, indy.getFitness(i) + v + penaltyFactor); | ||||
|                         indy.setFitnessAt(i, indy.getFitness(i) + v + penaltyFactor); | ||||
|                     } | ||||
|                 } | ||||
|                 break; | ||||
| @@ -89,7 +89,7 @@ public abstract class AbstractConstraint implements InterfaceDoubleConstraint, S | ||||
|                 if (v > 0) { | ||||
|                     indy.setMarkPenalized(true); | ||||
|                     for (int i = 0; i < indy.getFitness().length; i++) { | ||||
|                         indy.SetFitness(i, indy.getFitness(i) * (v + penaltyFactor)); | ||||
|                         indy.setFitnessAt(i, indy.getFitness(i) * (v + penaltyFactor)); | ||||
|                     } | ||||
|                 } | ||||
|             case specificTag: | ||||
|   | ||||
| @@ -57,7 +57,7 @@ public class FitnessAdaptiveClustering implements java.io.Serializable, Interfac | ||||
|             } | ||||
|  | ||||
|             for (int i = 0; i < population.size(); i++) { | ||||
|                 population.get(i).SetFitness(x, result[i]); | ||||
|                 population.get(i).setFitnessAt(x, result[i]); | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|   | ||||
| @@ -62,7 +62,7 @@ public class FitnessSharing implements java.io.Serializable, InterfaceFitnessMod | ||||
|             } | ||||
|  | ||||
|             for (int i = 0; i < population.size(); i++) { | ||||
|                 population.get(i).SetFitness(x, result[i]); | ||||
|                 population.get(i).setFitnessAt(x, result[i]); | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|   | ||||
| @@ -86,7 +86,7 @@ public class SteadyStateGA extends AbstractOptimizer implements java.io.Serializ | ||||
|         GAIndividualBinaryData tmpIndy; | ||||
|         for (int i = 0; i < population.size(); i++) { | ||||
|             tmpIndy = (GAIndividualBinaryData) population.get(i); | ||||
|             tmpIndy.SetFitness(0, tmpIndy.defaultEvaulateAsMiniBits()); | ||||
|             tmpIndy.setFitnessAt(0, tmpIndy.defaultEvaulateAsMiniBits()); | ||||
|             population.incrFunctionCalls(); | ||||
|         } | ||||
|         population.incrGeneration(); | ||||
|   | ||||
| @@ -108,8 +108,8 @@ public class TribesExplorer extends AbstractEAIndividual implements InterfaceDat | ||||
|      * by reducing the fitness (in the first dimension). | ||||
|      */ | ||||
|     @Override | ||||
|     public void SetFitness(int index, double fitness) { | ||||
|         super.SetFitness(index, fitness); | ||||
|     public void setFitnessAt(int index, double fitness) { | ||||
|         super.setFitnessAt(index, fitness); | ||||
|         if (index > position.fitness.length) { | ||||
|             double[] newFit = new double[index + 1]; | ||||
|             System.arraycopy(position.fitness, 0, newFit, 0, position.fitness.length); | ||||
| @@ -447,7 +447,7 @@ public class TribesExplorer extends AbstractEAIndividual implements InterfaceDat | ||||
| //                                             pb.fitnessSize, evaluate); | ||||
|             } else { // Artificial fitness by using penalties | ||||
|                 for (n = 0; n < position.fitness.length; n++) { | ||||
|                     SetFitness(n, swarm.tribes[fromTribe].memory[ | ||||
|                     setFitnessAt(n, swarm.tribes[fromTribe].memory[ | ||||
|                             contact]. | ||||
|                             getPos(). | ||||
|                             fitness[n] + | ||||
|   | ||||
| @@ -62,7 +62,7 @@ public abstract class AbstractProblemInteger extends AbstractOptimizationProblem | ||||
|         fitness = this.evaluate(x); | ||||
|         for (int i = 0; i < fitness.length; i++) { | ||||
|             // set the fitness of the individual | ||||
|             individual.SetFitness(i, fitness[i]); | ||||
|             individual.setFitnessAt(i, fitness[i]); | ||||
|         } | ||||
|         if ((this.bestIndividuum == null) || (this.bestIndividuum.getFitness(0) > individual.getFitness(0))) { | ||||
|             this.bestIndividuum = (AbstractEAIndividual) individual.clone(); | ||||
|   | ||||
| @@ -254,7 +254,7 @@ public class BKnapsackProblem extends AbstractProblemBinary implements java.io.S | ||||
|             } | ||||
|         } | ||||
|         result[0] += 5100; | ||||
|         individual.SetFitness(0, result[0]); | ||||
|         individual.setFitnessAt(0, result[0]); | ||||
|     } | ||||
|  | ||||
|     /** | ||||
|   | ||||
| @@ -13,7 +13,6 @@ import eva2.tools.math.RNG; | ||||
|  | ||||
| import javax.swing.*; | ||||
| import java.awt.*; | ||||
| import java.awt.image.BufferStrategy; | ||||
| import java.awt.image.BufferedImage; | ||||
|  | ||||
| class MyLensViewer extends JPanel implements InterfaceSolutionViewer { | ||||
| @@ -317,7 +316,7 @@ public class FLensProblem extends AbstractOptimizationProblem | ||||
|             fitness[i] += RNG.gaussianDouble(this.noise); | ||||
|             fitness[i] += this.yOffset; | ||||
|             // set the fitness of the individual | ||||
|             individual.SetFitness(i, fitness[i]); | ||||
|             individual.setFitnessAt(i, fitness[i]); | ||||
|         } | ||||
|         if ((this.overallBest == null) || (this.overallBest.getFitness(0) > individual.getFitness(0))) { | ||||
|             this.overallBest = (AbstractEAIndividual) individual.clone(); | ||||
|   | ||||
| @@ -196,21 +196,21 @@ public class PSymbolicRegression extends AbstractOptimizationProblem implements | ||||
|                 AbstractEAIndividual tmpBestConst = (AbstractEAIndividual) ((GAPIndividualProgramData) tmpIndy).getNumbers(); | ||||
|                 AbstractEAIndividual tmpConst; | ||||
|                 this.evaluate(tmpIndy); | ||||
|                 tmpBestConst.SetFitness(0, tmpIndy.getFitness(0)); | ||||
|                 tmpBestConst.setFitnessAt(0, tmpIndy.getFitness(0)); | ||||
|                 population.incrFunctionCalls(); | ||||
|                 for (int j = 0; j < 10; j++) { | ||||
|                     tmpConst = (AbstractEAIndividual) tmpBestConst.clone(); | ||||
|                     tmpConst.mutate(); | ||||
|                     ((GAPIndividualProgramData) tmpIndy).setNumbers((InterfaceDataTypeDouble) tmpConst); | ||||
|                     this.evaluate(tmpIndy); | ||||
|                     tmpConst.SetFitness(0, tmpIndy.getFitness(0)); | ||||
|                     tmpConst.setFitnessAt(0, tmpIndy.getFitness(0)); | ||||
|                     population.incrFunctionCalls(); | ||||
|                     if (tmpBestConst.getFitness(0) > tmpConst.getFitness(0)) { | ||||
|                         tmpBestConst = (AbstractEAIndividual) tmpConst.clone(); | ||||
|                     } | ||||
|                 } | ||||
|                 ((GAPIndividualProgramData) tmpIndy).setNumbers((InterfaceDataTypeDouble) tmpBestConst); | ||||
|                 tmpIndy.SetFitness(0, tmpBestConst.getFitness(0)); | ||||
|                 tmpIndy.setFitnessAt(0, tmpBestConst.getFitness(0)); | ||||
|             } else { | ||||
|                 if (useLocalHillClimbing) { | ||||
|                     EVAERROR.errorMsgOnce("Error: local hill climbing only works on GAPIndividualProgramData individuals!"); | ||||
| @@ -251,7 +251,7 @@ public class PSymbolicRegression extends AbstractOptimizationProblem implements | ||||
|         // add noise to the fitness | ||||
|         fitness += RNG.gaussianDouble(this.noise); | ||||
|         // set the fitness of the individual | ||||
|         individual.SetFitness(0, fitness); | ||||
|         individual.setFitnessAt(0, fitness); | ||||
|         if ((this.plot != null) && (this.plot.getFunctionArea().getContainerSize() == 0)) { | ||||
|             this.overallBestIndividuum = null; | ||||
|         } | ||||
|   | ||||
| @@ -132,7 +132,7 @@ public class TF1Problem extends AbstractMultiObjectiveOptimizationProblem implem | ||||
|             fitness[i] += RNG.gaussianDouble(this.noise); | ||||
|             fitness[i] += this.yOffset; | ||||
|             // set the fitness of the individual | ||||
|             individual.SetFitness(i, fitness[i]); | ||||
|             individual.setFitnessAt(i, fitness[i]); | ||||
|         } | ||||
|         if (this.applyConstraints) { | ||||
|             if (fitness[0] > 0.5) { | ||||
|   | ||||
		Reference in New Issue
	
	Block a user