Rename SetFitness to setFitnessAt
This commit is contained in:
@@ -546,7 +546,7 @@ public abstract class AbstractEAIndividual implements IndividualInterface, java.
|
||||
* @param index The index of the fitness value to set.
|
||||
* @param fitness The new fitness value.
|
||||
*/
|
||||
public void SetFitness(int index, double fitness) {
|
||||
public void setFitnessAt(int index, double fitness) {
|
||||
if (this.fitness.length > index) {
|
||||
this.fitness[index] = fitness;
|
||||
} else {
|
||||
|
@@ -81,7 +81,7 @@ public abstract class AbstractConstraint implements InterfaceDoubleConstraint, S
|
||||
if (v > 0) {
|
||||
indy.setMarkPenalized(true);
|
||||
for (int i = 0; i < indy.getFitness().length; i++) {
|
||||
indy.SetFitness(i, indy.getFitness(i) + v + penaltyFactor);
|
||||
indy.setFitnessAt(i, indy.getFitness(i) + v + penaltyFactor);
|
||||
}
|
||||
}
|
||||
break;
|
||||
@@ -89,7 +89,7 @@ public abstract class AbstractConstraint implements InterfaceDoubleConstraint, S
|
||||
if (v > 0) {
|
||||
indy.setMarkPenalized(true);
|
||||
for (int i = 0; i < indy.getFitness().length; i++) {
|
||||
indy.SetFitness(i, indy.getFitness(i) * (v + penaltyFactor));
|
||||
indy.setFitnessAt(i, indy.getFitness(i) * (v + penaltyFactor));
|
||||
}
|
||||
}
|
||||
case specificTag:
|
||||
|
@@ -57,7 +57,7 @@ public class FitnessAdaptiveClustering implements java.io.Serializable, Interfac
|
||||
}
|
||||
|
||||
for (int i = 0; i < population.size(); i++) {
|
||||
population.get(i).SetFitness(x, result[i]);
|
||||
population.get(i).setFitnessAt(x, result[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@@ -62,7 +62,7 @@ public class FitnessSharing implements java.io.Serializable, InterfaceFitnessMod
|
||||
}
|
||||
|
||||
for (int i = 0; i < population.size(); i++) {
|
||||
population.get(i).SetFitness(x, result[i]);
|
||||
population.get(i).setFitnessAt(x, result[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@@ -86,7 +86,7 @@ public class SteadyStateGA extends AbstractOptimizer implements java.io.Serializ
|
||||
GAIndividualBinaryData tmpIndy;
|
||||
for (int i = 0; i < population.size(); i++) {
|
||||
tmpIndy = (GAIndividualBinaryData) population.get(i);
|
||||
tmpIndy.SetFitness(0, tmpIndy.defaultEvaulateAsMiniBits());
|
||||
tmpIndy.setFitnessAt(0, tmpIndy.defaultEvaulateAsMiniBits());
|
||||
population.incrFunctionCalls();
|
||||
}
|
||||
population.incrGeneration();
|
||||
|
@@ -108,8 +108,8 @@ public class TribesExplorer extends AbstractEAIndividual implements InterfaceDat
|
||||
* by reducing the fitness (in the first dimension).
|
||||
*/
|
||||
@Override
|
||||
public void SetFitness(int index, double fitness) {
|
||||
super.SetFitness(index, fitness);
|
||||
public void setFitnessAt(int index, double fitness) {
|
||||
super.setFitnessAt(index, fitness);
|
||||
if (index > position.fitness.length) {
|
||||
double[] newFit = new double[index + 1];
|
||||
System.arraycopy(position.fitness, 0, newFit, 0, position.fitness.length);
|
||||
@@ -447,7 +447,7 @@ public class TribesExplorer extends AbstractEAIndividual implements InterfaceDat
|
||||
// pb.fitnessSize, evaluate);
|
||||
} else { // Artificial fitness by using penalties
|
||||
for (n = 0; n < position.fitness.length; n++) {
|
||||
SetFitness(n, swarm.tribes[fromTribe].memory[
|
||||
setFitnessAt(n, swarm.tribes[fromTribe].memory[
|
||||
contact].
|
||||
getPos().
|
||||
fitness[n] +
|
||||
|
@@ -62,7 +62,7 @@ public abstract class AbstractProblemInteger extends AbstractOptimizationProblem
|
||||
fitness = this.evaluate(x);
|
||||
for (int i = 0; i < fitness.length; i++) {
|
||||
// set the fitness of the individual
|
||||
individual.SetFitness(i, fitness[i]);
|
||||
individual.setFitnessAt(i, fitness[i]);
|
||||
}
|
||||
if ((this.bestIndividuum == null) || (this.bestIndividuum.getFitness(0) > individual.getFitness(0))) {
|
||||
this.bestIndividuum = (AbstractEAIndividual) individual.clone();
|
||||
|
@@ -254,7 +254,7 @@ public class BKnapsackProblem extends AbstractProblemBinary implements java.io.S
|
||||
}
|
||||
}
|
||||
result[0] += 5100;
|
||||
individual.SetFitness(0, result[0]);
|
||||
individual.setFitnessAt(0, result[0]);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@@ -13,7 +13,6 @@ import eva2.tools.math.RNG;
|
||||
|
||||
import javax.swing.*;
|
||||
import java.awt.*;
|
||||
import java.awt.image.BufferStrategy;
|
||||
import java.awt.image.BufferedImage;
|
||||
|
||||
class MyLensViewer extends JPanel implements InterfaceSolutionViewer {
|
||||
@@ -317,7 +316,7 @@ public class FLensProblem extends AbstractOptimizationProblem
|
||||
fitness[i] += RNG.gaussianDouble(this.noise);
|
||||
fitness[i] += this.yOffset;
|
||||
// set the fitness of the individual
|
||||
individual.SetFitness(i, fitness[i]);
|
||||
individual.setFitnessAt(i, fitness[i]);
|
||||
}
|
||||
if ((this.overallBest == null) || (this.overallBest.getFitness(0) > individual.getFitness(0))) {
|
||||
this.overallBest = (AbstractEAIndividual) individual.clone();
|
||||
|
@@ -196,21 +196,21 @@ public class PSymbolicRegression extends AbstractOptimizationProblem implements
|
||||
AbstractEAIndividual tmpBestConst = (AbstractEAIndividual) ((GAPIndividualProgramData) tmpIndy).getNumbers();
|
||||
AbstractEAIndividual tmpConst;
|
||||
this.evaluate(tmpIndy);
|
||||
tmpBestConst.SetFitness(0, tmpIndy.getFitness(0));
|
||||
tmpBestConst.setFitnessAt(0, tmpIndy.getFitness(0));
|
||||
population.incrFunctionCalls();
|
||||
for (int j = 0; j < 10; j++) {
|
||||
tmpConst = (AbstractEAIndividual) tmpBestConst.clone();
|
||||
tmpConst.mutate();
|
||||
((GAPIndividualProgramData) tmpIndy).setNumbers((InterfaceDataTypeDouble) tmpConst);
|
||||
this.evaluate(tmpIndy);
|
||||
tmpConst.SetFitness(0, tmpIndy.getFitness(0));
|
||||
tmpConst.setFitnessAt(0, tmpIndy.getFitness(0));
|
||||
population.incrFunctionCalls();
|
||||
if (tmpBestConst.getFitness(0) > tmpConst.getFitness(0)) {
|
||||
tmpBestConst = (AbstractEAIndividual) tmpConst.clone();
|
||||
}
|
||||
}
|
||||
((GAPIndividualProgramData) tmpIndy).setNumbers((InterfaceDataTypeDouble) tmpBestConst);
|
||||
tmpIndy.SetFitness(0, tmpBestConst.getFitness(0));
|
||||
tmpIndy.setFitnessAt(0, tmpBestConst.getFitness(0));
|
||||
} else {
|
||||
if (useLocalHillClimbing) {
|
||||
EVAERROR.errorMsgOnce("Error: local hill climbing only works on GAPIndividualProgramData individuals!");
|
||||
@@ -251,7 +251,7 @@ public class PSymbolicRegression extends AbstractOptimizationProblem implements
|
||||
// add noise to the fitness
|
||||
fitness += RNG.gaussianDouble(this.noise);
|
||||
// set the fitness of the individual
|
||||
individual.SetFitness(0, fitness);
|
||||
individual.setFitnessAt(0, fitness);
|
||||
if ((this.plot != null) && (this.plot.getFunctionArea().getContainerSize() == 0)) {
|
||||
this.overallBestIndividuum = null;
|
||||
}
|
||||
|
@@ -132,7 +132,7 @@ public class TF1Problem extends AbstractMultiObjectiveOptimizationProblem implem
|
||||
fitness[i] += RNG.gaussianDouble(this.noise);
|
||||
fitness[i] += this.yOffset;
|
||||
// set the fitness of the individual
|
||||
individual.SetFitness(i, fitness[i]);
|
||||
individual.setFitnessAt(i, fitness[i]);
|
||||
}
|
||||
if (this.applyConstraints) {
|
||||
if (fitness[0] > 0.5) {
|
||||
|
Reference in New Issue
Block a user