Refactored "SetProblem" function to "setProblem". Coding Standards for the win.

This commit is contained in:
Fabian Becker 2013-01-25 13:20:25 +00:00
parent ffd4041594
commit ef36d09218
53 changed files with 109 additions and 109 deletions

View File

@ -127,7 +127,7 @@ public class OptimizerFactory {
setTemplateOperators(problem, new NoMutation(), 0, new NoCrossover(), 0);
DifferentialEvolution de = new DifferentialEvolution();
de.SetProblem(problem);
de.setProblem(problem);
de.getPopulation().setTargetSize(popsize);
de.setDEType(DETypeEnum.DE2_CurrentToBest);
de.setF(f);
@ -208,7 +208,7 @@ public class OptimizerFactory {
// theES.setParentSelection(selection);
// theES.setPartnerSelection(selection);
theES.setEnvironmentSelection(selection);
theES.SetProblem(problem);
theES.setProblem(problem);
theES.init();
if (listener != null) listener.registerPopulationStateChanged(theES.getPopulation(), "");
@ -240,7 +240,7 @@ public class OptimizerFactory {
setTemplateOperators(problem, mut, pm, cross, pc);
GeneticAlgorithm ga = new GeneticAlgorithm();
ga.SetProblem(problem);
ga.setProblem(problem);
ga.getPopulation().setTargetSize(popsize);
ga.setParentSelection(select);
ga.setPartnerSelection(select);
@ -308,7 +308,7 @@ public class OptimizerFactory {
InterfacePopulationChangedEventListener listener) {
problem.initProblem();
subOpt.SetProblem(problem);
subOpt.setProblem(problem);
return new MultiObjectiveEA(subOpt, archiving, archiveSize,
infoRetrieval, problem);
@ -376,7 +376,7 @@ public class OptimizerFactory {
hc.setIdentifier("-"+popSize+"-"+mutator.getStringRepresentation());
hc.getPopulation().setTargetSize(popSize);
hc.addPopulationChangedEventListener(listener);
hc.SetProblem(problem);
hc.setProblem(problem);
hc.init();
if (listener != null) listener.registerPopulationStateChanged(hc.getPopulation(), "");
@ -403,7 +403,7 @@ public class OptimizerFactory {
MonteCarloSearch mc = new MonteCarloSearch();
mc.getPopulation().setTargetSize(popsize);
mc.addPopulationChangedEventListener(listener);
mc.SetProblem(problem);
mc.setProblem(problem);
mc.init();
if (listener != null) listener.registerPopulationStateChanged(mc.getPopulation(), "");
@ -437,7 +437,7 @@ public class OptimizerFactory {
setTemplateOperators(problem, new NoMutation(), 0, new NoCrossover(), 0);
ParticleSwarmOptimization pso = new ParticleSwarmOptimization();
pso.SetProblem(problem);
pso.setProblem(problem);
pso.getPopulation().setTargetSize(popsize);
pso.setPhi1(phi1);
pso.setPhi2(phi2);
@ -480,7 +480,7 @@ public class OptimizerFactory {
SimulatedAnnealing sa = new SimulatedAnnealing();
sa.setAlpha(alpha);
sa.setInitialTemperature(temperature);
sa.SetProblem(problem);
sa.setProblem(problem);
sa.getPopulation().setTargetSize(popsize);
sa.addPopulationChangedEventListener(listener);
sa.init();
@ -518,7 +518,7 @@ public class OptimizerFactory {
pbil.setPositiveSamples(positiveSamples);
pbil.addPopulationChangedEventListener(listener);
pbil.SetProblem(problem);
pbil.setProblem(problem);
if (listener != null) listener.registerPopulationStateChanged(pbil.getPopulation(), "");
@ -763,7 +763,7 @@ public class OptimizerFactory {
InterfaceTerminator term) {
GOParameters params = new GOParameters();
params.setProblem(problem);
opt.SetProblem(problem);
opt.setProblem(problem);
opt.setPopulation(pop);
params.setOptimizer(opt);
params.setTerminator(term);
@ -1340,7 +1340,7 @@ public class OptimizerFactory {
AbstractOptimizationProblem problem, int evalCycle, int popSize, double minImprovement,
PostProcessMethod method, double hcInitialStep, double hcStepThresh, double sigmaClust) {
ClusteringHillClimbing chc = new ClusteringHillClimbing();
chc.SetProblem(problem);
chc.setProblem(problem);
chc.setEvalCycle(evalCycle);
chc.setInitialPopSize(popSize);

View File

@ -312,7 +312,7 @@ public class GOStandaloneVersion implements InterfaceGOStandalone, InterfacePopu
((GAIndividualDoubleData)tmpIndy).setMutationProbability(1.0);
((F1Problem)problem).setEAIndividual(tmpIndy);
//((FGRNInferringProblem)this.m_Problem).setStructreSkelInterval(1);
this.m_GO.getOptimizer().SetProblem(problem);
this.m_GO.getOptimizer().setProblem(problem);
this.m_GO.getOptimizer().addPopulationChangedEventListener(this);
this.doWork();
break;
@ -329,7 +329,7 @@ public class GOStandaloneVersion implements InterfaceGOStandalone, InterfacePopu
((F1Problem)problem).setEAIndividual(tmpIndy);
//((FGRNInferringProblem)this.m_Problem).setUseHEigenMatrix(true);
//((FGRNInferringProblem)this.m_Problem).setUseOnlyPositiveNumbers(true);
this.m_GO.getOptimizer().SetProblem(problem);
this.m_GO.getOptimizer().setProblem(problem);
this.m_GO.getOptimizer().addPopulationChangedEventListener(this);
this.doWork();
break;
@ -375,7 +375,7 @@ public class GOStandaloneVersion implements InterfaceGOStandalone, InterfacePopu
// init problem
this.m_GO.getProblem().initProblem();
this.m_GO.getOptimizer().SetProblem(this.m_GO.getProblem());
this.m_GO.getOptimizer().setProblem(this.m_GO.getProblem());
// int optimizer and population
//this.m_GO.getOptimizer().init();

View File

@ -363,7 +363,7 @@ public class MOCCOStandalone implements InterfaceGOStandalone, InterfacePopulati
if (this.m_JFrame != null) {
}
this.m_StillWorking = true;
this.m_State.m_Optimizer.SetProblem(this.m_State.m_CurrentProblem);
this.m_State.m_Optimizer.setProblem(this.m_State.m_CurrentProblem);
if (this.m_Debug) System.out.println(""+this.m_State.m_Optimizer.getStringRepresentation());
this.m_State.m_CurrentProblem.evaluate(this.m_State.m_Optimizer.getPopulation());
this.m_State.m_Optimizer.getPopulation().SetFunctionCalls(0);

View File

@ -125,7 +125,7 @@ public class MOCCOParameterizeGDF extends MOCCOPhase implements InterfaceProcess
gbc.gridwidth = 1;
this.m_EOpt = new GeneralGOEProperty();
this.m_Opt = new GeneticAlgorithm();
this.m_Opt.SetProblem(this.m_Mocco.m_State.m_CurrentProblem);
this.m_Opt.setProblem(this.m_Mocco.m_State.m_CurrentProblem);
this.m_Mocco.m_State.m_Optimizer = this.m_Opt;
this.m_EOpt.m_Name = "Island Model EA";
try {
@ -217,7 +217,7 @@ public class MOCCOParameterizeGDF extends MOCCOPhase implements InterfaceProcess
PropertyDoubleArray da = new PropertyDoubleArray(w);
wf.setOutputDimension(da.getNumRows());
wf.setWeights(da);
m_Opt.SetProblem(m_Mocco.m_State.m_CurrentProblem);
m_Opt.setProblem(m_Mocco.m_State.m_CurrentProblem);
m_Mocco.m_State.m_Optimizer = m_Opt;
m_Mocco.m_JPanelControl.removeAll();
m_Mocco.m_JPanelControl.validate();

View File

@ -138,7 +138,7 @@ public class MOCCOParameterizeMO extends MOCCOPhase implements InterfaceProcessE
//m_Mocco.m_State.m_Optimizer = (InterfaceOptimizer)m_Optimizer.clone();
m_Mocco.m_JPanelControl.removeAll();
m_Mocco.m_JPanelParameters.removeAll();
m_Mocco.m_State.m_Optimizer.SetProblem(m_Mocco.m_State.m_CurrentProblem);
m_Mocco.m_State.m_Optimizer.setProblem(m_Mocco.m_State.m_CurrentProblem);
Population pop = m_Mocco.m_State.m_Optimizer.getPopulation();
pop.clear();
if (pop.getArchive() != null) pop.getArchive().clear();

View File

@ -137,7 +137,7 @@ public class MOCCOParameterizeRefPoint extends MOCCOPhase implements InterfacePr
this.m_Island.setMigrationRate(2);
this.m_Island.setMigrationStrategy(new SOBestMigration());
this.m_Island.setNumberLocalCPUs(this.m_Perturbations);
this.m_Island.SetProblem(this.m_Mocco.m_State.m_CurrentProblem);
this.m_Island.setProblem(this.m_Mocco.m_State.m_CurrentProblem);
this.m_Mocco.m_State.m_Optimizer = this.m_Island;
this.m_EIMEA.m_Name = "Island Model EA";
try {
@ -234,7 +234,7 @@ public class MOCCOParameterizeRefPoint extends MOCCOPhase implements InterfacePr
// m_Island.setNumberLocalCPUs(m_Perturbations);
// }
m_Mocco.m_State.m_Optimizer = m_Island;
m_Mocco.m_State.m_Optimizer.SetProblem(m_Mocco.m_State.m_CurrentProblem);
m_Mocco.m_State.m_Optimizer.setProblem(m_Mocco.m_State.m_CurrentProblem);
m_Island.init();
double[] tmpD;
MOSOLpMetric[] tmpLPs = new MOSOLpMetric[m_Perturbations];

View File

@ -66,7 +66,7 @@ public class MOCCOParameterizeSO extends MOCCOPhase implements InterfaceProcessE
"a Genetic Algorithms, please parameterize accordingly.",
"Warning", JOptionPane.WARNING_MESSAGE);
this.m_Mocco.m_State.m_Optimizer = new GeneticAlgorithm();
this.m_Mocco.m_State.m_Optimizer.SetProblem(this.m_Mocco.m_State.m_CurrentProblem);
this.m_Mocco.m_State.m_Optimizer.setProblem(this.m_Mocco.m_State.m_CurrentProblem);
}
this.m_Mocco.m_JPanelParameters.removeAll();
this.m_Mocco.m_JPanelParameters.setLayout(new BorderLayout());

View File

@ -167,7 +167,7 @@ public class MOCCOParameterizeSTEP extends MOCCOPhase implements InterfaceProces
gbc.gridwidth = 1;
this.m_EOpt = new GeneralGOEProperty();
this.m_Opt = new GeneticAlgorithm();
this.m_Opt.SetProblem(this.m_Mocco.m_State.m_CurrentProblem);
this.m_Opt.setProblem(this.m_Mocco.m_State.m_CurrentProblem);
this.m_Mocco.m_State.m_Optimizer = this.m_Opt;
this.m_EOpt.m_Name = "Island Model EA";
try {
@ -294,7 +294,7 @@ public class MOCCOParameterizeSTEP extends MOCCOPhase implements InterfaceProces
double[] setWeights = mapObjectives2Fitness(weights);
PropertyDoubleArray da = new PropertyDoubleArray(setWeights);
wf.setWeights(da);
m_Opt.SetProblem(m_Mocco.m_State.m_CurrentProblem);
m_Opt.setProblem(m_Mocco.m_State.m_CurrentProblem);
m_Mocco.m_State.m_Optimizer = m_Opt;
m_Mocco.m_JPanelControl.removeAll();
m_Mocco.m_JPanelControl.validate();

View File

@ -114,7 +114,7 @@ public class MOCCOParameterizeTchebycheff extends MOCCOPhase implements Interfac
this.m_Island.setMigrationRate(2);
this.m_Island.setMigrationStrategy(new SOBestMigration());
this.m_Island.setNumberLocalCPUs(this.m_Perturbations);
this.m_Island.SetProblem(this.m_Mocco.m_State.m_CurrentProblem);
this.m_Island.setProblem(this.m_Mocco.m_State.m_CurrentProblem);
this.m_Mocco.m_State.m_Optimizer = this.m_Island;
this.m_EIMEA.m_Name = "Island Model EA";
try {
@ -241,7 +241,7 @@ public class MOCCOParameterizeTchebycheff extends MOCCOPhase implements Interfac
// m_Island.setNumberLocalCPUs(m_Perturbations);
// }
m_Mocco.m_State.m_Optimizer = m_Island;
m_Mocco.m_State.m_Optimizer.SetProblem(m_Mocco.m_State.m_CurrentProblem);
m_Mocco.m_State.m_Optimizer.setProblem(m_Mocco.m_State.m_CurrentProblem);
m_Island.init();
double[] tmpD;
double sum = 0, l = 0, u = 1;

View File

@ -56,14 +56,14 @@ public class MOCCOState {
this.m_BackupOptimizer = null;
}
this.m_Optimizer.setPopulation(pop);
this.m_Optimizer.SetProblem(this.m_CurrentProblem);
this.m_Optimizer.setProblem(this.m_CurrentProblem);
this.m_CurrentProblem.evaluate(this.m_Optimizer.getPopulation());
}
public void makeBackup() {
this.m_BackupProblem = (InterfaceOptimizationProblem)this.m_CurrentProblem.clone();
this.m_BackupOptimizer = (InterfaceOptimizer)this.m_Optimizer.clone();
this.m_BackupOptimizer.SetProblem(null);
this.m_BackupOptimizer.setProblem(null);
}
public void addPopulation2History(Population pop) {

View File

@ -201,7 +201,7 @@ public class MOClusteringSeparation implements InterfaceMigration, java.io.Seria
// else out += "\n Using objective space.";
// System.out.println(""+out);
// }
islands[i].SetProblem(prob);
islands[i].setProblem(prob);
}
}
}

View File

@ -266,7 +266,7 @@ public class MOConeSeparation implements InterfaceMigration, java.io.Serializabl
((AbstractMultiObjectiveOptimizationProblem)prob).m_AreaConst4Parallelization.add(b);
}
islands[i].SetProblem(prob);
islands[i].setProblem(prob);
}
}
}
@ -360,7 +360,7 @@ public class MOConeSeparation implements InterfaceMigration, java.io.Serializabl
((AbstractMultiObjectiveOptimizationProblem)prob).m_AreaConst4Parallelization.add(sts);
((AbstractMultiObjectiveOptimizationProblem)prob).m_AreaConst4Parallelization.add(bts);
}
islands[i].SetProblem(prob);
islands[i].setProblem(prob);
// if (true) {
// prob.evaluate(newIPOP[i]);
// System.out.println("Invalid Individual in Island "+i+" ("+newIPOP[i].size()+"): ");

View File

@ -207,7 +207,7 @@ public class MOXMeansSeparation implements InterfaceMigration, java.io.Serializa
// else out += "\n Using objective space.";
// System.out.println(""+out);
// }
islands[i].SetProblem(prob);
islands[i].setProblem(prob);
}
}
}

View File

@ -386,7 +386,7 @@ public class PostProcess {
public static void processWithHC(Population pop, AbstractOptimizationProblem problem, InterfaceTerminator term, InterfaceMutation mute) {
HillClimbing hc = new HillClimbing();
// HC depends heavily on the selected mutation operator!
hc.SetProblem(problem);
hc.setProblem(problem);
mute.init(problem.getIndividualTemplate(), problem);
hc.SetMutationOperator(mute);
if (pop.size() != pop.getTargetSize()) {
@ -405,7 +405,7 @@ public class PostProcess {
public static int processWithGDA(Population pop, AbstractOptimizationProblem problem, InterfaceTerminator term, int baseEvals, double minStepSize, double maxStepSize) {
GradientDescentAlgorithm gda = new GradientDescentAlgorithm();
gda.setAdaptStepSizeLocally(true);
gda.SetProblem(problem);
gda.setProblem(problem);
gda.setLocalMinStepSize(minStepSize);
gda.setLocalMaxStepSize(maxStepSize);
gda.setRecovery(false);

View File

@ -111,7 +111,7 @@ public class F2Problem extends AbstractProblemDoubleOffset implements InterfaceL
private void initLS() {
localSearchOptimizer = new GradientDescentAlgorithm();
localSearchOptimizer.SetProblem(this);
localSearchOptimizer.setProblem(this);
localSearchOptimizer.init();
}

View File

@ -142,7 +142,7 @@ implements InterfaceMultimodalProblem, InterfaceFirstOrderDerivableProblem, Inte
private void initLS() {
localSearchOptimizer = new GradientDescentAlgorithm();
localSearchOptimizer.SetProblem(this);
localSearchOptimizer.setProblem(this);
localSearchOptimizer.init();
}

View File

@ -599,7 +599,7 @@ public class BOA implements InterfaceOptimizer, java.io.Serializable {
return this.m_Identifier;
}
public void SetProblem(InterfaceOptimizationProblem problem) {
public void setProblem(InterfaceOptimizationProblem problem) {
this.problem = (AbstractOptimizationProblem) problem;
}

View File

@ -731,7 +731,7 @@ public class BinaryScatterSearch implements InterfaceOptimizer, java.io.Serializ
return this.m_Identifier;
}
public void SetProblem(InterfaceOptimizationProblem problem) {
public void setProblem(InterfaceOptimizationProblem problem) {
this.problem = (AbstractOptimizationProblem) problem;
}

View File

@ -67,8 +67,8 @@ public class CBNPSO extends ClusterBasedNichingEA implements Serializable {
}
@Override
public void SetProblem(InterfaceOptimizationProblem problem) {
super.SetProblem(problem);
public void setProblem(InterfaceOptimizationProblem problem) {
super.setProblem(problem);
if (problem instanceof AbstractProblemDouble) {
AbstractProblemDouble dblProb = ((AbstractProblemDouble)problem);
adaptMinMaxSwarmSizeByDim(dblProb);

View File

@ -238,7 +238,7 @@ public class CHCAdaptiveSearchAlgorithm implements InterfaceOptimizer, java.io.S
/** This method will set the problem that is to be optimized
* @param problem
*/
public void SetProblem (InterfaceOptimizationProblem problem) {
public void setProblem (InterfaceOptimizationProblem problem) {
this.m_Problem = problem;
}
public InterfaceOptimizationProblem getProblem () {

View File

@ -972,9 +972,9 @@ public class ClusterBasedNichingEA implements InterfacePopulationChangedEventLis
/** This method will set the problem that is to be optimized
* @param problem
*/
public void SetProblem (InterfaceOptimizationProblem problem) {
public void setProblem (InterfaceOptimizationProblem problem) {
this.m_Problem = problem;
this.m_Optimizer.SetProblem(this.m_Problem);
this.m_Optimizer.setProblem(this.m_Problem);
}
public InterfaceOptimizationProblem getProblem () {
return this.m_Problem;

View File

@ -107,7 +107,7 @@ InterfaceOptimizer, Serializable, InterfaceAdditionalPopulationInformer {
/** This method will set the problem that is to be optimized
* @param problem
*/
public void SetProblem (InterfaceOptimizationProblem problem) {
public void setProblem (InterfaceOptimizationProblem problem) {
this.m_Problem = problem;
}
public InterfaceOptimizationProblem getProblem () {

View File

@ -665,7 +665,7 @@ public class DifferentialEvolution implements InterfaceOptimizer, java.io.Serial
/** This method will set the problem that is to be optimized
* @param problem
*/
public void SetProblem (InterfaceOptimizationProblem problem) {
public void setProblem (InterfaceOptimizationProblem problem) {
this.m_Problem = (AbstractOptimizationProblem)problem;
}
public InterfaceOptimizationProblem getProblem () {

View File

@ -487,8 +487,8 @@ public class DynamicParticleSwarmOptimization extends ParticleSwarmOptimization
}
public void SetProblem (InterfaceOptimizationProblem problem) {
super.SetProblem(problem);
public void setProblem (InterfaceOptimizationProblem problem) {
super.setProblem(problem);
if (problem instanceof AbstractOptimizationProblem) {
((AbstractOptimizationProblem)problem).informAboutOptimizer(this);
}

View File

@ -243,7 +243,7 @@ public class EsDpiNiching implements InterfaceOptimizer, Serializable, Interface
// Trying to come close to the selection scheme of Shir&Bäck'05:
peakOpts[i].setParentSelection(parentSel);
peakOpts[i].setPartnerSelection(new SelectBestSingle(true));
peakOpts[i].SetProblem(problem);
peakOpts[i].setProblem(problem);
peakOpts[i].init();
peakOpts[i].setLambda(lambdaPerPeak); // set lambda after initialization
peakOpts[i].setForceOrigPopSize(false);
@ -1079,7 +1079,7 @@ public class EsDpiNiching implements InterfaceOptimizer, Serializable, Interface
return problem;
}
public void SetProblem(InterfaceOptimizationProblem prob) {
public void setProblem(InterfaceOptimizationProblem prob) {
this.problem = prob;
}

View File

@ -268,7 +268,7 @@ public class EvolutionStrategies implements InterfaceOptimizer, java.io.Serializ
*
* @param problem
*/
public void SetProblem(InterfaceOptimizationProblem problem) {
public void setProblem(InterfaceOptimizationProblem problem) {
this.optimizationProblem = problem;
}

View File

@ -131,7 +131,7 @@ public class EvolutionaryProgramming implements InterfaceOptimizer, java.io.Seri
/** This method will set the problem that is to be optimized
* @param problem
*/
public void SetProblem (InterfaceOptimizationProblem problem) {
public void setProblem (InterfaceOptimizationProblem problem) {
this.m_Problem = problem;
}
public InterfaceOptimizationProblem getProblem () {

View File

@ -120,7 +120,7 @@ public class FloodAlgorithm implements InterfaceOptimizer, java.io.Serializable
/** This method will set the problem that is to be optimized
* @param problem
*/
public void SetProblem (InterfaceOptimizationProblem problem) {
public void setProblem (InterfaceOptimizationProblem problem) {
this.m_Problem = problem;
}
public InterfaceOptimizationProblem getProblem () {

View File

@ -197,7 +197,7 @@ public class GeneticAlgorithm implements InterfaceOptimizer, java.io.Serializabl
/** This method will set the problem that is to be optimized
* @param problem
*/
public void SetProblem (InterfaceOptimizationProblem problem) {
public void setProblem (InterfaceOptimizationProblem problem) {
this.m_Problem = problem;
}
public InterfaceOptimizationProblem getProblem () {

View File

@ -324,7 +324,7 @@ public class GradientDescentAlgorithm implements InterfaceOptimizer, java.io.Ser
return this.m_Identifier;
}
public void SetProblem(InterfaceOptimizationProblem problem) {
public void setProblem(InterfaceOptimizationProblem problem) {
m_Problem = problem;
}
@ -350,7 +350,7 @@ public class GradientDescentAlgorithm implements InterfaceOptimizer, java.io.Ser
public static void main(String[] args) {
GradientDescentAlgorithm program = new GradientDescentAlgorithm();
InterfaceOptimizationProblem problem = new F1Problem();
program.SetProblem(problem);
program.setProblem(problem);
program.init();
for (int i = 0; i < 100; i++) {
program.optimize();

View File

@ -128,7 +128,7 @@ public class HillClimbing implements InterfaceOptimizer, java.io.Serializable {
/** This method will set the problem that is to be optimized
* @param problem
*/
public void SetProblem (InterfaceOptimizationProblem problem) {
public void setProblem (InterfaceOptimizationProblem problem) {
this.m_Problem = problem;
}
public InterfaceOptimizationProblem getProblem () {

View File

@ -94,7 +94,7 @@ public interface InterfaceOptimizer {
*
* @param problem
*/
public void SetProblem (InterfaceOptimizationProblem problem);
public void setProblem (InterfaceOptimizationProblem problem);
public InterfaceOptimizationProblem getProblem ();
/** This method will return a string describing all properties of the optimizer

View File

@ -101,7 +101,7 @@ public class IslandModelEA implements InterfacePopulationChangedEventListener, I
this.m_Population.clear();
this.m_Population.init();
this.m_Optimizer.init();
this.m_Optimizer.SetProblem(this.m_Problem);
this.m_Optimizer.setProblem(this.m_Problem);
this.m_Optimizer.setPopulation((Population)m_Population.clone());
InterfacePopulationChangedEventListener myLocal = null;
if (this.m_localOnly) {
@ -171,7 +171,7 @@ public class IslandModelEA implements InterfacePopulationChangedEventListener, I
this.m_Population.incrGeneration();
}
this.m_Optimizer.init();
this.m_Optimizer.SetProblem(this.m_Problem);
this.m_Optimizer.setProblem(this.m_Problem);
InterfacePopulationChangedEventListener myLocal = null;
if (this.m_localOnly) {
// this is running on the local machine
@ -297,9 +297,9 @@ public class IslandModelEA implements InterfacePopulationChangedEventListener, I
/** This method will set the problem that is to be optimized
* @param problem
*/
public void SetProblem (InterfaceOptimizationProblem problem) {
public void setProblem (InterfaceOptimizationProblem problem) {
this.m_Problem = problem;
this.m_Optimizer.SetProblem(problem);
this.m_Optimizer.setProblem(problem);
}
public InterfaceOptimizationProblem getProblem () {
return this.m_Problem;

View File

@ -118,7 +118,7 @@ public class LTGA implements InterfaceOptimizer, java.io.Serializable, Interface
@Override
public void init() {
defaultInit();
this.defaultInit();
this.problem.initPopulation(this.population);
this.evaluatePopulation(this.population);
this.firePropertyChangedEvent(Population.nextGenerationPerformed);
@ -150,7 +150,7 @@ public class LTGA implements InterfaceOptimizer, java.io.Serializable, Interface
@Override
public void initByPopulation(Population pop, boolean reset) {
if (reset) {
init();
this.init();
} else {
defaultInit();
this.population = pop;
@ -247,7 +247,7 @@ public class LTGA implements InterfaceOptimizer, java.io.Serializable, Interface
@Override
public void optimize() {
this.problem.evaluatePopulationStart(this.population);
Stack<Set<Integer>> linkageTree = buildLinkageTree();
Stack<Set<Integer>> linkageTree = this.buildLinkageTree();
Population newPop = new Population(this.popSize);
if(elitism){
Population firstIndies = this.population.getBestNIndividuals(2, fitCrit);
@ -259,7 +259,7 @@ public class LTGA implements InterfaceOptimizer, java.io.Serializable, Interface
continue;
}
Population indies = this.population.getRandNIndividuals(2);
Population newIndies = buildNewIndies(indies, linkageTree);
Population newIndies = this.buildNewIndies(indies, linkageTree);
newPop.addAll(newIndies);
}
this.population.clear();
@ -341,7 +341,7 @@ public class LTGA implements InterfaceOptimizer, java.io.Serializable, Interface
}
@Override
public void SetProblem(InterfaceOptimizationProblem problem) {
public void setProblem(InterfaceOptimizationProblem problem) {
this.problem = (AbstractOptimizationProblem) problem;
}

View File

@ -320,7 +320,7 @@ public class MLTGA implements InterfaceOptimizer, java.io.Serializable, Interfac
}
@Override
public void SetProblem(InterfaceOptimizationProblem problem) {
public void setProblem(InterfaceOptimizationProblem problem) {
this.problem = (AbstractOptimizationProblem) problem;
}

View File

@ -98,7 +98,7 @@ public class MemeticAlgorithm implements InterfaceOptimizer,
public void init() {
// counter = 0;
this.m_GlobalOptimizer.SetProblem(this.m_Problem);
this.m_GlobalOptimizer.setProblem(this.m_Problem);
this.m_GlobalOptimizer.init();
this.evaluatePopulation(this.m_GlobalOptimizer.getPopulation());
this.firePropertyChangedEvent(Population.nextGenerationPerformed);
@ -225,9 +225,9 @@ public class MemeticAlgorithm implements InterfaceOptimizer,
*
* @param problem
*/
public void SetProblem(InterfaceOptimizationProblem problem) {
public void setProblem(InterfaceOptimizationProblem problem) {
this.m_Problem = problem;
this.m_GlobalOptimizer.SetProblem(this.m_Problem);
this.m_GlobalOptimizer.setProblem(this.m_Problem);
}
public InterfaceOptimizationProblem getProblem() {
@ -320,7 +320,7 @@ public class MemeticAlgorithm implements InterfaceOptimizer,
*/
public void setGlobalOptimizer(InterfaceOptimizer m_GlobalOptimizer) {
this.m_GlobalOptimizer = m_GlobalOptimizer;
this.m_GlobalOptimizer.SetProblem(this.getProblem());
this.m_GlobalOptimizer.setProblem(this.getProblem());
this.init();
}

View File

@ -103,7 +103,7 @@ public class MonteCarloSearch implements InterfaceOptimizer, java.io.Serializabl
/** This method will set the problem that is to be optimized
* @param problem
*/
public void SetProblem (InterfaceOptimizationProblem problem) {
public void setProblem (InterfaceOptimizationProblem problem) {
this.m_Problem = problem;
}
public InterfaceOptimizationProblem getProblem () {

View File

@ -88,7 +88,7 @@ public class MultiObjectiveCMAES implements InterfaceOptimizer, Serializable {
* eva2.server.go.strategies.InterfaceOptimizer#SetProblem(eva2.server.go
* .problems.InterfaceOptimizationProblem)
*/
public void SetProblem(InterfaceOptimizationProblem problem) {
public void setProblem(InterfaceOptimizationProblem problem) {
m_Problem = (AbstractOptimizationProblem) problem;
}

View File

@ -67,7 +67,7 @@ public class MultiObjectiveEA implements InterfaceOptimizer, java.io.Serializabl
setArchivingStrategy(archiving);
setArchiveSize(archiveSize);
setInformationRetrieval(infoRetrieval);
SetProblem(problem);
setProblem(problem);
}
public Object clone() {
@ -171,9 +171,9 @@ public class MultiObjectiveEA implements InterfaceOptimizer, java.io.Serializabl
/** This method will set the problem that is to be optimized
* @param problem
*/
public void SetProblem (InterfaceOptimizationProblem problem) {
public void setProblem (InterfaceOptimizationProblem problem) {
this.m_Problem = problem;
this.m_Optimizer.SetProblem(problem);
this.m_Optimizer.setProblem(problem);
}
public InterfaceOptimizationProblem getProblem () {
return this.m_Problem;

View File

@ -62,12 +62,12 @@ public class NelderMeadSimplex implements InterfaceOptimizer, Serializable, Inte
m_Identifier = name;
}
public void SetProblem(InterfaceOptimizationProblem problem) {
public void setProblem(InterfaceOptimizationProblem problem) {
m_Problem = (AbstractOptimizationProblem)problem;
}
public boolean setProblemAndPopSize(InterfaceOptimizationProblem problem) {
SetProblem(problem);
setProblem(problem);
if (m_Problem instanceof AbstractProblemDouble) {
setPopulationSize(((AbstractProblemDouble)problem).getProblemDimension()+1);
return true;

View File

@ -256,7 +256,7 @@ public class NichePSO implements InterfaceAdditionalPopulationInformer, Interfac
protected void initMainSwarm(){
// pass NichePSO parameter on to the mainswarmoptimzer
setMainSwarmSize(mainSwarmSize); // (particles are initialized later via init)
getMainSwarm().SetProblem(m_Problem);
getMainSwarm().setProblem(m_Problem);
getMainSwarm().SetMaxAllowedSwarmRadius(maxAllowedSwarmRadius);
getMainSwarm().getPopulation().setGenerationTo(0);
@ -285,7 +285,7 @@ public class NichePSO implements InterfaceAdditionalPopulationInformer, Interfac
*/
protected void initSubswarmOptimizerTemplate(){
// pass on the parameters set via NichePSO (done in the analogous nichePSO-Setters as well -> no init() necessary)
getSubswarmOptimizerTemplate().SetProblem(m_Problem);
getSubswarmOptimizerTemplate().setProblem(m_Problem);
getSubswarmOptimizerTemplate().SetMaxAllowedSwarmRadius(maxAllowedSwarmRadius);
// choose PSO-type for the subswarmoptimizer
@ -311,7 +311,7 @@ public class NichePSO implements InterfaceAdditionalPopulationInformer, Interfac
public ParticleSubSwarmOptimization getNewSubSwarmOptimizer(){
//initSubswarmOptimizerTemplate();
ParticleSubSwarmOptimization template = (ParticleSubSwarmOptimization)getSubswarmOptimizerTemplate().clone(); // this implicitely clones the problem but does not initialize it again...
template.SetProblem(this.m_Problem); //... let all subswarms use the same correct initialised problem instance
template.setProblem(this.m_Problem); //... let all subswarms use the same correct initialised problem instance
return template;
}
@ -1219,15 +1219,15 @@ public class NichePSO implements InterfaceAdditionalPopulationInformer, Interfac
* This method will set the problem that is to be optimized
* @param problem
*/
public void SetProblem(InterfaceOptimizationProblem problem) {
public void setProblem(InterfaceOptimizationProblem problem) {
// set member
this.m_Problem = problem;
// pass on to the main- and subswarm optimizers
getMainSwarm().SetProblem(problem);
getMainSwarm().setProblem(problem);
for (int i = 0; i < getSubSwarms().size(); ++i){
getSubSwarms().get(i).SetProblem(problem);
getSubSwarms().get(i).setProblem(problem);
}
getSubswarmOptimizerTemplate().SetProblem(problem);
getSubswarmOptimizerTemplate().setProblem(problem);
}
/** @tested nn

View File

@ -257,7 +257,7 @@ public class ParticleFilterOptimization implements InterfaceOptimizer, java.io.S
/** This method will set the problem that is to be optimized
* @param problem
*/
public void SetProblem (InterfaceOptimizationProblem problem) {
public void setProblem (InterfaceOptimizationProblem problem) {
this.m_Problem = problem;
if (problem instanceof AbstractOptimizationProblem) {
((AbstractOptimizationProblem)problem).informAboutOptimizer(this);

View File

@ -456,7 +456,7 @@ public class ParticleSubSwarmOptimization extends ParticleSwarmOptimizationGCPSO
///////////
ParticleSubSwarmOptimization tmpopt = new ParticleSubSwarmOptimization();
tmpopt.SetProblem(this.m_Problem);
tmpopt.setProblem(this.m_Problem);
tmpopt.evaluatePopulation(tmp);
tmpopt.initByPopulation(tmp, false); // + size FCs
@ -558,7 +558,7 @@ public class ParticleSubSwarmOptimization extends ParticleSwarmOptimizationGCPSO
* This method will set the problem that is to be optimized
* @param problem
*/
public void SetProblem (InterfaceOptimizationProblem problem) {
public void setProblem (InterfaceOptimizationProblem problem) {
this.m_Problem = problem;
updateMaxPosDist();
}

View File

@ -1684,7 +1684,7 @@ public class ParticleSwarmOptimization implements InterfaceOptimizer, java.io.Se
*
* @param problem
*/
public void SetProblem(InterfaceOptimizationProblem problem) {
public void setProblem(InterfaceOptimizationProblem problem) {
this.m_Problem = problem;
}

View File

@ -138,7 +138,7 @@ public class PopulationBasedIncrementalLearning implements InterfaceOptimizer, j
/** This method will set the problem that is to be optimized
* @param problem
*/
public void SetProblem (InterfaceOptimizationProblem problem) {
public void setProblem (InterfaceOptimizationProblem problem) {
this.m_Problem = problem;
if (m_Problem instanceof AbstractOptimizationProblem) {
if (!(((AbstractOptimizationProblem)m_Problem).getIndividualTemplate() instanceof InterfaceGAIndividual)) {

View File

@ -104,7 +104,7 @@ public class ScatterSearch implements InterfaceOptimizer, java.io.Serializable,
GenericObjectEditor.setHideProperty(this.getClass(), "population", true);
}
public void SetProblem(InterfaceOptimizationProblem problem) {
public void setProblem(InterfaceOptimizationProblem problem) {
this.problem = (AbstractOptimizationProblem)problem;
}
@ -818,7 +818,7 @@ public class ScatterSearch implements InterfaceOptimizer, java.io.Serializable,
AbstractOptimizationProblem problem, InterfaceTerminator term) {
ScatterSearch ss = new ScatterSearch();
problem.initProblem();
ss.SetProblem(problem);
ss.setProblem(problem);
ss.setRefSetSize(refSetSize);
ss.setNelderMeadInitPerturbation(nmInitPerturb);
ss.setLocalSearchRelativeFilter(relativeFitCrit);

View File

@ -126,7 +126,7 @@ public class SimulatedAnnealing implements InterfaceOptimizer, java.io.Serializa
/** This method will set the problem that is to be optimized
* @param problem
*/
public void SetProblem (InterfaceOptimizationProblem problem) {
public void setProblem (InterfaceOptimizationProblem problem) {
this.m_Problem = problem;
}
public InterfaceOptimizationProblem getProblem () {

View File

@ -130,7 +130,7 @@ public class SteadyStateGA implements InterfaceOptimizer, java.io.Serializable {
/** This method will set the problem that is to be optimized
* @param problem
*/
public void SetProblem (InterfaceOptimizationProblem problem) {
public void setProblem (InterfaceOptimizationProblem problem) {
this.m_Problem = problem;
}
public InterfaceOptimizationProblem getProblem () {

View File

@ -118,7 +118,7 @@ public class ThresholdAlgorithm implements InterfaceOptimizer, java.io.Serializa
/** This method will set the problem that is to be optimized
* @param problem
*/
public void SetProblem (InterfaceOptimizationProblem problem) {
public void setProblem (InterfaceOptimizationProblem problem) {
this.m_Problem = problem;
}
public InterfaceOptimizationProblem getProblem () {

View File

@ -184,7 +184,7 @@ public class Tribes implements InterfaceOptimizer, java.io.Serializable {
}
public Tribes(Tribes other) {
this.SetProblem(other.getProblem());
this.setProblem(other.getProblem());
iter = other.iter;
setObjectiveFirstDim(other.getObjectiveFirstDim());
setDimension(other.range.length);
@ -202,7 +202,7 @@ public class Tribes implements InterfaceOptimizer, java.io.Serializable {
hideHideable();
}
public void SetProblem(InterfaceOptimizationProblem problem) {
public void setProblem(InterfaceOptimizationProblem problem) {
// System.out.println("TRIBES.SetProblem()");
m_problem = (AbstractOptimizationProblem)problem;
range = null;

View File

@ -66,7 +66,7 @@ public class WingedMultiObjectiveEA implements InterfaceOptimizer, java.io.Seria
int dim = this.m_OutputDimension;
double[] weights;
// dim = tmpProb.getOutputDimension();
this.m_MOOptimizer.SetProblem((InterfaceOptimizationProblem)this.m_Problem.clone());
this.m_MOOptimizer.setProblem((InterfaceOptimizationProblem)this.m_Problem.clone());
this.m_MOOptimizer.init();
this.m_SOOptimizers = new InterfaceOptimizer[dim];
for (int i = 0; i < dim; i++) {
@ -79,11 +79,11 @@ public class WingedMultiObjectiveEA implements InterfaceOptimizer, java.io.Seria
tmpWF.setWeights(tmpDA);
tmpP.setMOSOConverter(tmpWF);
this.m_SOOptimizers[i] = (InterfaceOptimizer)this.m_SOOptimizer.clone();
this.m_SOOptimizers[i].SetProblem(tmpP);
this.m_SOOptimizers[i].setProblem(tmpP);
this.m_SOOptimizers[i].init();
}
} else {
this.m_SOOptimizer.SetProblem(this.m_Problem);
this.m_SOOptimizer.setProblem(this.m_Problem);
this.m_SOOptimizer.init();
}
this.communicate();
@ -104,7 +104,7 @@ public class WingedMultiObjectiveEA implements InterfaceOptimizer, java.io.Seria
int dim = 2;
double[] weights;
// dim = tmpProb.getOutputDimension();
this.m_MOOptimizer.SetProblem((InterfaceOptimizationProblem)this.m_Problem.clone());
this.m_MOOptimizer.setProblem((InterfaceOptimizationProblem)this.m_Problem.clone());
this.m_MOOptimizer.initByPopulation(pop, reset);
this.m_SOOptimizers = new InterfaceOptimizer[dim];
for (int i = 0; i < dim; i++) {
@ -117,11 +117,11 @@ public class WingedMultiObjectiveEA implements InterfaceOptimizer, java.io.Seria
tmpWF.setWeights(tmpDA);
tmpP.setMOSOConverter(tmpWF);
this.m_SOOptimizers[i] = (InterfaceOptimizer)this.m_SOOptimizer.clone();
this.m_SOOptimizers[i].SetProblem(tmpP);
this.m_SOOptimizers[i].setProblem(tmpP);
this.m_SOOptimizers[i].initByPopulation(pop, reset);
}
} else {
this.m_SOOptimizer.SetProblem(this.m_Problem);
this.m_SOOptimizer.setProblem(this.m_Problem);
this.m_SOOptimizer.initByPopulation(pop, reset);
}
this.communicate();
@ -224,7 +224,7 @@ public class WingedMultiObjectiveEA implements InterfaceOptimizer, java.io.Seria
/** This method will set the problem that is to be optimized
* @param problem
*/
public void SetProblem (InterfaceOptimizationProblem problem) {
public void setProblem (InterfaceOptimizationProblem problem) {
this.m_Problem = problem;
}
public InterfaceOptimizationProblem getProblem () {

View File

@ -42,7 +42,7 @@ public abstract class AbstractGOParameters implements InterfaceGOParameters, Ser
this.m_Optimizer = goParameters.m_Optimizer;
this.m_Problem = goParameters.m_Problem;
this.m_Terminator = goParameters.m_Terminator;
this.m_Optimizer.SetProblem(this.m_Problem);
this.m_Optimizer.setProblem(this.m_Problem);
this.randomSeed = goParameters.randomSeed;
this.m_PostProc = goParameters.m_PostProc;
}
@ -53,7 +53,7 @@ public abstract class AbstractGOParameters implements InterfaceGOParameters, Ser
m_Problem = prob;
m_Terminator = term;
m_PostProc = new PostProcessParams(false);
opt.SetProblem(prob);
opt.setProblem(prob);
}
/**
@ -65,7 +65,7 @@ public abstract class AbstractGOParameters implements InterfaceGOParameters, Ser
setOptimizer(src.m_Optimizer);
setProblem(src.m_Problem);
setTerminator(src.m_Terminator);
this.m_Optimizer.SetProblem(this.m_Problem);
this.m_Optimizer.setProblem(this.m_Problem);
setSeed(src.randomSeed);
setPostProcessParams(src.m_PostProc);
}
@ -139,7 +139,7 @@ public abstract class AbstractGOParameters implements InterfaceGOParameters, Ser
public void setOptimizer(InterfaceOptimizer optimizer) {
this.m_Optimizer = optimizer;
this.m_Optimizer.SetProblem(this.m_Problem);
this.m_Optimizer.setProblem(this.m_Problem);
if (this.m_Listener != null) this.m_Optimizer.addPopulationChangedEventListener(this.m_Listener);
fireNotifyOnInformers();
}
@ -168,7 +168,7 @@ public abstract class AbstractGOParameters implements InterfaceGOParameters, Ser
*/
public void setProblem (InterfaceOptimizationProblem problem) {
this.m_Problem = problem;
this.m_Optimizer.SetProblem(this.m_Problem);
this.m_Optimizer.setProblem(this.m_Problem);
fireNotifyOnInformers();
}

View File

@ -230,7 +230,7 @@ public class Processor extends Thread implements InterfaceProcessor, InterfacePo
m_Statistics.startOptPerformed(getInfoString(), runCounter, goParams, getInformerList());
this.goParams.getProblem().initProblem();
this.goParams.getOptimizer().SetProblem(this.goParams.getProblem());
this.goParams.getOptimizer().setProblem(this.goParams.getProblem());
this.goParams.getTerminator().init(this.goParams.getProblem());
maybeInitParamCtrl(goParams);
if (this.m_createInitialPopulations) {